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Abstract – The semiconductor hole gas can be viewed as the companion of the classic interacting
electron gas with a more complicated band structure and plays a crucial role in the understanding
of ferromagnetic semiconductors. Here we study the dielectric function of a homogeneous hole gas
in zinc blende III–V bulk semiconductors within random phase approximation with the valence
band being modeled by Luttinger’s Hamiltonian in the spherical approximation. In the static limit
we find a beating of Friedel oscillations between the two Fermi momenta for heavy and light holes,
while at large frequencies dramatic corrections to the plasmon dispersion occur.

Copyright c© EPLA, 2010

The interacting electron gas, combined with a homoge-
neous neutralizing background, is one of the paradigmatic
systems of many-body physics [1–3]. Although it is obvi-
ously a grossly simplified model of a solid-state system, its
predictions provide a good description of important prop-
erties of three-dimensional bulk metals and, in the regime
of lower carrier densities, of n-doped semiconductors
where the electrons reside in the s-type conduction band.
On the other hand, in a p-doped zinc blende III–V

semiconductor such as GaAs, the defect electrons or holes
occupy the p-type valence band whose more complex
band structure can be expected to significantly modify
the electronic properties. Moreover, the most intensively
studied ferromagnetic semiconductors such as Mn-doped
GaAs are in fact p-doped with the holes playing a key
role in the occurrence of carrier-mediated ferromagnetism
among the localized Mn magnetic moments [4]. Thus, such
p-doped bulk semiconductor systems lie at the very heart
of the still growing field of spintronics [5], and therefore it
appears highly desirable to gain a deeper understanding
of their many-body physics.
Following the above motivations, we investigate in the

present letter the dielectric function of the homogeneous
hole gas in p-doped zinc blende III–V bulk semiconductors
within random phase approximation (RPA) [1–3]. The
single-particle band structure of the valence band is mod-
eled by Luttinger’s Hamiltonian in the spherical approx-
imation [6]. In previous work we have studied the same
system using the Hartree-Fock (HF) approximation [7].

(a)E-mail: john.schliemann@physik.uni-regensburg.de

A key result here is the observation that in a fully
self-consistent solution of the HF equations the Coulomb
repulsion among holes modifies the Fermi momenta
compared to the non-interacting situation. In particular,
the self-consistent solution of the HF equations is not
equivalent to first-order perturbation theory as it the case
for the ordinary electron gas [1–3]. Moreover, we mention
recent studies of the dielectric function in two-dimensional
electron systems with spin-orbit coupling [8,9] and two-
dimensional hole systems [10]. Other recent related
studies have dealt with the dielectric function of planar
graphene sheets where an effective spin is incorporated
by the sublattice degree of freedom [11,12].
Luttinger’s Hamiltonian describing heavy- and light-

hole states around the Γ in III–V zinc blende semicon-
ductors reads [6]

H= 1

2m0

((
γ1+

5

2
γ2

)
�p 2− 2γ2(�p · �S )2

)
, (1)

where m0 is the bare electron mass, �p is the hole lattice
momentum, and �S are spin-(3/2) operators. The dimen-
sionless Luttinger parameters γ1 and γ2 describe the
valence band of the specific material within the so-called
spherical approximation The above Hamiltonian is
rotationally invariant and commutes with the helicity
operator λ= (�k · �S)/k, where �k= �p/� is the hole wave
vector. Thus, the eigenstates of (1) can be chosen to be
eigenstates of the helicity operator with the heavy (light)
holes corresponding to λ=±3/2 (λ=±1/2). The energy
dispersions are given by εh/l(�k) = �

2k2/2mh/l where
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mh/l =m0/(γ1∓ 2γ2) is the effective mass of heavy and
light holes, respectively.
Combining the above single-particle Hamiltonian with

Coulomb repulsion among holes and a neutralizing back-
ground, the dielectric function within RPA is generally
given by

εRPA(�k, ω) = 1−V (�k)χ0(�k, ω), (2)

where V (�k) is the Fourier transform of the interaction
potential, and the free polarizability reads

χ0(�k, ω) =
1

(2π)3

∑
λ1,λ2

∫
d3k′

[∣∣∣〈χλ1(�k′)|χλ2(�k′+�k)〉∣∣∣2

· f(�k′, λ1)− f(�k′+�k, λ2)
�ω+ i0−

(
ελ2(
�k′+�k)− ελ1(�k′)

)
]
. (3)

Here f(�k, λ) are Fermi functions, and the explicit form

of the four-component eigenspinors |χλ(�k)〉 of the Hamil-
tonian (1) has been given in ref. [7]. The mutual overlap of
these eigenspinors entering the above expression is a key
feature of the semiconductor hole gas.
In general, an exact evaluation of the free polarizability

(3) is, even in the limit of zero temperature, a formidable
task and clearly more complicated than the case of the
spinless electron gas. Therefore we shall be content here
with zero-temperature properties concentrating on the
static limit, and on the regime of large frequency and small
wave vector. In the former case (ω= 0) an already quite
tedious calculation yields

χ0(�k, 0) = − mh
π2�2

kh

(
1+3

(
k

2kh

)2)
L

(
k

2kh

)

− ml
π2�2

kl

(
1+3

(
k

2kl

)2)
L

(
k

2kl

)

+
3
(√
mh+

√
ml
)2

4π2�2
k2

kh+ kl
L

(
k

kh+ kl

)

−3 (mh−ml)
2

4π2�2
(kh− kl)

(
1−L

(
k

kh+ kl

))

+
3mh
2π2�2

kH

(
k

2kh

)
+
3ml
2π2�2

kH

(
k

2kl

)

−3 (mh+ml)
2

4π2�2
kH

(
k

kh+ kl

)
, (4)

where kh/l =
√
2mh/lεF /�2 are the Fermi wave numbers

for heavy and light holes at the Fermi energy εF . The
so-called Lindhard correction L is given by

L(x) =

(
1

2
+
1−x2
4x

ln

∣∣∣∣1+x1−x
∣∣∣∣
)
, (5)

and the function H is defined as

H(x) =
1

2

∫ 1/x
0

dy
1

y
ln

∣∣∣∣1+ y1− y
∣∣∣∣

=




π2

4
−
∞∑
n=0

x2n+1

(2n+1)2
, |x|� 1,

∞∑
n=0

(
1
x

)2n+1
(2n+1)2

, |x|� 1.
(6)

Remarkably, one can express the polarizability entirely
in terms of the arguments k/2kh, k/2kl, and k/kh+ kl
with the latter one being the harmonic mean of the
two former. In the limit mh =ml (i.e. kh = kl =: kF )

one obtains the usual result χ0(�k, 0) =−D(εF )L(k/2kF )
for charge carriers without spin-orbit coupling where
D(ε) is the density of states [13]. The full polarization
(4 at mh �=ml, however, has a clearly more complicted
structure.
On the other hand, considering Coulomb repulsion,
V (�k) = e2/εrε0k

2, and using the long-wave approxi-

mation χ0(�k, 0)≈ χ0(0, 0) leads to the usual Thomas-
Fermi (TF) screening, εRPA(�k, 0)≈ 1− k2TF /k2 with
k2TF = (e

2/εrε0)3n/2εF . Here εr is the background dielec-
tric constant taking into account screening by deeper
bands, and the hole density is given by n= nh+nl,
nh/l = k

3
h/l/3π

2.
The full screened potential of a pointlike probe charge
Q is given by

Φ(�r) =
1

(2π)3

∫
d3k

Q
εrε0k2

εRPA(�k)
ei
�k�r, (7)

whose asymptotic behavior is determined by the singular-
ities of the integrand and its derivatives [14]. Here the
first derivative has singularities at k= 2kh and k= 2kl
while at k= kh+ kl all singular contributions cancel out.
As a result, the Lighthill theorem [14] yields for large
distances r

Φ(r)≈ mh
m0
φ∞(2kh, r)+

ml

m0
φ∞(2kl, r), (8)

where

φ∞(q, r) =
Q

4πε0a0

2

π

1

(εrεRPA(q))
2

cos(qr)

(qr)3
(9)

and a0 = 4πε0�
2/m0e

2 being the usual Bohr radius.
Thus, we observe a beating of Friedel oscillations between
the two wave numbers 2kh/l. Note that, differently
form the expression for the dielectric function itself, the
wave number k= kh+ kl does not occur in the Friedel
oscillations since the non-interacting ground state of the
hole gas has singularities in the occupation numbers at
k= kh/l but not at k= (kh+ kl)/2. Figure 1 shows the
Friedel oscillations according to eq. (8) along with a
numerical evaluation of the full Fourier integral (7) for
p-doped GaAs with a hole density of n= 1020 cm−3, which
is a very typical value for Mn-doped GaAs [4]. One might
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Fig. 1: Friedel oscillations resulting from a numerical evaluation
of the Fourier integral (7), and estimated via the Lighthill
theorem (cf. eq. (8)) for p-doped GaAs with a hole density
of n= 1020 cm−3. The inset shows the data at larger distances
on a smaller scale.

argue whether one should replace the Fermi momenta
kh/l with renormalized values arising from a fully self-
consistent solution to the HF equations. However, at large
densities this renormalization becomes negligible [7].
The beating of Friedel oscillations illustrated in the

figure is a peculiarity of the holes residing in the p-type
valence band and should be observable via similar scann-
ing tunneling microscopy techniques as used in metals [15]
and n-doped semiconductors [16]. Moreover, as theoret-
ical studies have revealed, such oscillations can have a
profound impact on the magnetic properties of ferro-
magnetic semiconductors [17,18]. Moreover, fig. 1 shows
the amazing accuracy of the asymptotic expression (8)
obtained from the Lighthill theorem.
Let us now turn to the regime of large frequencies

and small wave vectors. Following ref. [2] we expand

the denominators in eq. (3) assuming �ω� εh/l(�k) and
�ω� (�kh/l/mh/l)�k. Within the two leading orders one
finds

εRPA(�k, ω) = 1− 1
ω2
e2

εrε0

1

6π2

(
1

mh
+
1

ml

)(
k3h+ k

3
l

)

− 1
ω4
e2�2

εrε0π2
1

2

(
1

m3h
+
1

m3l

)[
1

5
k2
(
k5h+ k

5
l

)

+
1

12
k4
(
k3h+ k

3
l

)]

− 1
ω4
e2�2

εrε0π2

[
− 1
56

(
1

m3h
− 1
m3l

)(
k7h− k7l

)

+
3

56

(
1

mh
− 1
ml

)2(
k7h
mh
+
k7l
ml

)

+
3

28

(
1

mh
− 1
ml

)(
k7h
m2h
− k

7
l

m2l

)

+
21

200
k2
(
1

m3h
− 1
m3l

)(
k5h− k5l

)

− 3
40
k2
(
1

mh
− 1
ml

)(
k5h
m2h
− k

5
l

m2l

)]
. (10)

For mh =ml the first three lines of the above expression
reproduce again the standard textbook result [2] while
all other terms vanish in this limit. On the other hand,
if mh �=ml, one has contributions in order 1/ω4 that
are independent of the wave vector �k. Such terms are
absent in the case of the standard electron gas where
the contributions of order 1/ω2n are at least of order
k2n−2 in the wave vector [2]. The technical reason why
such contributions are present for the hole gas is that
the expression ελ2(

�k′+�k)− ελ1(�k′) in eq. (3) contains for
|λ1| �= |λ2| an additive term which is independent of k
(and vanishes formh =ml). These prima vista unexpected
contributions to the high-frequency expansion of the
dielectric function will also occur at even higher orders.
However, even in the two leading orders given in eq. (10),
they strongly modify the plasmon dispersion determined
by εRPA(�k, ω(k)) = 0 which can be expressed as

ω2(k) = (ω(0)p )
2

[
1

2
+
1

2

[
1+4

(
u(n1/3a0)

+ (v+w)
(ka0)

2

n1/3a0

)]1/2]
+O (k4), (11)

≈ (ω(0)p )2
(
1+u(n1/3a0)+ (v+w)

(ka0)
2

n1/3a0

)
, (12)

where the zeroth-order plasma frequency is given by1

(
ω(0)p

)2
=
e2

εrε0

n

2

(
1

mh
+
1

ml

)
, (13)

and the dimensionless and density-independent coeffi-
cients u, v, w are given by

u =
Q (mh,ml)

(3π2)
1/3
(
m
3/2
h +m

3/2
l

)2/3
×
[
− 3
14

(
1

m3h
− 1
m3l

)(
m
7/2
h −m7/2l

)

+
9

14

(
1

mh
− 1
ml

)2 (
m
5/2
h +m

5/2
l

)

+
9

7

(
1

mh
− 1
ml

)(
(m
3/2
h −m3/2l

)]
, (14)

v=Q (mh,ml)
2

5π2

(
1

m3h
+
1

m3l

)(
m
5/2
h +m

5/2
l

)
, (15)

1The lowest-order result (13) for the plasma frequency differs in
detail from the one given in ref. [7] due to a somewhat oversimplified
approach there.
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Table 1: Material parameter and coefficients u, v, w of the
plasmon dispersion (12) for various III–V semiconductors.

mh
m0

ml
m0

εr
ml
mh

u v w

AlAs 0.47 0.18 10.0 0.38 17.7 21.5 −16.3
AlSb 0.36 0.13 12.0 0.36 49.7 37.1 −29.5
GaAs 0.5 0.08 12.8 0.16 195.4 99.4 −100.5
InAs 0.5 0.026 14.5 0.052 861.4 451.9 −473.1
InSb 0.2 0.015 18.0 0.075 1796.9 919.2 −958.8

w = Q (mh,ml)

[
21

50π2

(
1

m3h
− 1
m3l

)(
m
5/2
h −m5/2l

)

− 3

10π2

(
1

mh
− 1
ml

)(
m
1/2
h −m1/2l

)]
(16)

with the common prefactor

Q (mh,ml)
εr
4πm0(
1
mh
+ 1
ml

)2 (3π2)5/3(
m
3/2
h +m

3/2
l

)5/3 . (17)

Clearly, the coefficients u and w vanish for mh =ml while
from v one recovers the usual textbook result for an
electron gas without spin-orbit coupling [2]. By expanding
the square root in eq. (11) we have neglected higher
contributions both in wave vector and in the density

parameter n1/3a0 ∝ (εF /�ω(0)p )2, which is consistent with
considering only the first two leading orders in eq. (10).
In fact, for usual p-doped bulk semiconductors n1/3a0
is small, and to consistently obtain contributions to the
plasmon dispersion being of higher order in the density
would require to extend the expansion (10) also to higher
orders, which is computationally increasingly tedious and
will lead to even lengthier expressions. Note that the
dispersion coefficients u, v, w depend entirely on material
parameters. In table 1 we have listed their numerical
values for several prominent III–V semiconductor systems.
As seen there, the coefficient u is remarkably large leading
to a substantial enhancement of the long-wavelength

plasma frequency ω2(0) = (ω
(0)
p )2(1+u(n1/3a0), even at

small densities, compared to the naive guess ω2(0)≈
(ω
(0)
p )2. On the other hand, v and w differ in sign and

are of quite similar magnitude resulting in a dramatic
flattening of the plasma dispersion compared to the
standard case mh =ml where w vanishes. Moreover, the
sum v+w can even become negative leading to a plasmon
dispersion bending downwards around zero wave vector.
In fact the sign of v+w is entirely determined by the
ratio ml/mh where negative values occur for ml/mh �
0.18. Remarkably, GaAs lies very close this threshold
showing already such a qualitative change in the plasmon
dispersion. This trend is further enhanced in the cases of
InAs and InSb.
In summary, we have studied the dielectric function of

the homogeneous hole gas in p-doped zinc-blende III–V

semiconductors. In the static limit we predict additional
beatings of the Friedel oscillations which should be
experimentally detectable via state-of-the-art scanning
tunneling microscopy. At high frequencies and small wave
vectors the plasmon dispersion gets dramatically altered
compared to the textbook case of the usual electron gas.
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