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We study the entanglement spectrum of spin-1/2 XXZ ladders both analytically and numerically. Our analytical
approach is based on perturbation theory starting either from the limit of strong rung coupling, or from the opposite
case of dominant coupling along the legs. In the former case we find to leading order that the entanglement
Hamiltonian is also of nearest-neighbor XXZ form although with an, in general, renormalized anisotropy. For
the cases of XX and isotropic Heisenberg ladders no such renormalization takes place. In the Heisenberg case the
second-order correction to the entanglement Hamiltonian consists of a renormalization of the nearest-neighbor
coupling plus an unfrustrated next-nearest-neighbor coupling. In the opposite regime of strong coupling along
the legs, we point out an interesting connection of the entanglement spectrum to the Lehmann representation of
single-chain spectral functions of operators appearing in the physical Hamiltonian coupling the two chains.
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I. INTRODUCTION

In the past decade many-body physics has been sub-
stantially enriched by the concept of entanglement, whose
extensive and systematic study originated in the field of
quantum information theory.1 In particular, the notion of the
entanglement spectrum2 has led to novel insights in the physics
of various many-body systems. These include quantum Hall
monolayers at fractional filling,2–11 quantum Hall bilayers at
filling factor ν = 1,12 spin systems of one13–18 and two19–21

spatial dimensions, and topological insulators.22,23 Other
topics recently covered encompass rotating Bose-Einstein
condensates,24 coupled Tomonaga-Luttinger liquids,25 and
systems of Bose-Hubbard26 and complex paired superfluids.27

In Ref. 17 Poilblanc observed that chain-chain entangle-
ment spectra in two-leg spin ladders are remarkably similar to
the energy spectrum of a single Heisenberg chain. Furthermore
he found that the fitted effective inverse temperature depends
on the ratio of the leg to the rung couplings and vanishes
in the limit of strong rung coupling. In a parallel study of
entanglement spectra of quantum Hall bilayers at ν = 1 one
of the present authors observed a similarly striking analogy
between the entanglement spectrum of a single layer and the
energy spectrum of a single physical layer at ν = 1/2.12

In this paper we study the entanglement spectrum of
two coupled XXZ chains analytically in two limiting cases:
(a) the case of strong rung coupling and (b) the case of weak
rung coupling. In case (a) we find that the entanglement
spectrum is described to leading order by an entanglement
Hamiltonian of the XXZ form, albeit with an, in general,
renormalized effective anisotropy (and thus independently
reproducing the recently posted result of Ref. 18). For the
particular cases of XX and Heisenberg ladders the anisotropy
is unaltered, and we arrive at the conclusion that in these cases
the entanglement Hamiltonian is indeed the physical Hamilto-
nian restricted to a single chain. Moreover, we derive explicit
results for the next-to-leading order exhibiting deviations of
the entanglement Hamiltonian from nearest-neighbor XXZ

coupling. In case (b) we point out an interesting connection
between the entanglement spectrum and the Lehmann rep-

resentation of single-chain spectral functions of the operators
contained in the physical Hamiltonian coupling the two chains.

We consider an XXZ spin-ladder Hamiltonian H = H0 +
H1 with

H0 = Jrung

∑
m

[
1

2
(S+

m,1S
−
m,2 + H.c.) + �Sz

m,1S
z
m,2

]
,

H1 = Jleg

∑
m,ν

[
1

2
(S+

m,νS
−
m+1,ν + H.c.) + �Sz

m,νS
z
m+1,ν

]
(1)

describing the coupling along the rungs and legs, respectively.
The sites are labeled by (m,ν), where m ∈ {1, . . . ,L} denotes
the position within chain ν = 1,2. All spin-1/2 operators
are taken to be dimensionless such that Jrung, Jleg have
dimensions of energy, and � is a dimensionless XXZ

anisotropy parameter. In the following we will always assume
a ladder of length L with periodic boundary conditions if not
specified otherwise. In the following we limit our discussion
to the antiferromagnetic regime Jleg,Jrung � 0. Apart from
the special case Jleg = 1, Jrung = 0 (corresponding to two
decoupled critical S = 1/2 chains), the system is gapped in
this regime, with exponentially decaying correlations.

II. EXACT DIAGONALIZATION RESULTS

Before discussing our analytical results in the two limiting
cases we present an overview of the full Jleg/Jrung dependence
of the entanglement spectrum ξ := − log(λ) obtained from the
eigenvalues λ of the reduced density matrix of a single chain in
a Heisenberg (� = 1) spin ladder (cf. bipartition setup shown
in Fig. 1). In the region Jleg/Jrung < 1 selected numerical
spectra have already been presented in Refs. 17 and 20.

In the upper panel of Fig. 2 the bare entanglement spectrum
for an L = 8 ladder is shown as a function of Jleg/Jrung (note
the logarithmic x axis), where the levels are labeled according
to their Sz quantum number.28 In the limit Jleg/Jrung → 0+
all the 2L levels of the entanglement spectrum collapse onto a
single value L ln 2, and for finite Jleg/Jrung they start to spread.
For Jleg/Jrung � 1 the spectrum rearranges, and a notable
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FIG. 1. (Color online) Two-leg spin ladder considered in this
paper. The chains are labeled by ν = 1,2, while the runs are labeled
by m = 1, . . . L. We consider the entanglement spectrum in the
illustrated chain-chain bipartition.

feature is that the lowest levels above the singlet ground states
are a sizable set of S = 1 triplets, displaying a common slope
of 2 when plotted as a function of ln(Jleg/Jrung). Note that
this is in contrast with the behavior at small Jleg/Jrung, where
there is only one triplet located below the second singlet in the
entanglement spectrum.

In the lower panels of Fig. 2 we highlight the behavior in
the two limit cases by appropriately rescaling and shifting
the entanglement spectra. In the lower left panel we also
show the energy spectrum of an L = 8 Heisenberg chain
(multiplied by two) to demonstrate the remarkable agreement
between the entanglement spectrum and the energy spectrum
in this particular limit. As just discussed the structure of the
entanglement spectrum is somewhat different in the opposite
limit, and the analogy with the energy spectrum of a single
chain apparently breaks down.

We now provide an analytical justification of the reported
behavior based on perturbation theory around the two limits
(a) and (b) described above.

III. Strong rung coupling limit

Let us now treat H1 as a perturbation to H0 with antifer-
romagnetic coupling, Jrung > 0. The unperturbed ground state
reads

|0〉 =
⊗

m

|sm〉, (2)

using obvious notation for singlet and triplet states on the
rungs,

|sm〉 = 1√
2

(|↑〉m,1 |↓〉m,2− |↓〉m,1 |↑〉m,2), (3)

|t+m 〉 = |↑〉m,1 |↑〉m,2, (4)

|t0
m〉 = 1√

2
(|↑〉m,1 |↓〉m,2+ |↓〉m,1 |↑〉m,2), (5)

|t−m 〉 = |↓〉m,1 |↓〉m,2. (6)

A. First order

The first-order correction to the ground state can be
obtained by elementary calculation,

|1〉 = + Jleg

4Jrung

∑
m

[
2

1 + �
(· · · |t+m 〉|t−m+1〉 · · ·)

+ 2

1 + �
(· · · |t−m 〉|t+m+1〉 · · ·) − �

( · · · ∣∣t0
m

〉∣∣t0
m+1

〉 · · · )],

(7)

FIG. 2. (Color online) Overview of the entanglement spectrum
of the reduced density matrix of a single chain (cf. setup in Fig. 1)
in a Heisenberg (� = 1) spin ladder for different Sz

tot = Stot sectors
as a function of Jleg/Jrung. The system size is L = 8. While in the
upper panel the bare entanglement spectrum is shown, in the lower
panels the leading asymptotic behavior in the two limiting cases
Jleg/Jrung → 0 and Jrung/Jleg → 0 is highlighted by appropriate shifts
and rescaling indicated on the y axes. The filled dots in all panels
denote numerical entanglement spectrum levels, while the constant
lines in the lower left panel highlight twice the eigenvalues of a
single L = 8, S = 1/2 Heisenberg chain. The gray region in the
lower right panel indicates the part of the rescaled entanglement
spectrum affected by the finite (double) precision arithmetic used in
the numerical calculations.

where the dots denote singlet states on each rung not explicitly
specified. The reduced density operator is obtained by tracing
out one of the legs from ρ = (|0〉 + |1〉)(〈0| + 〈1|) and is given
within first order in Jleg/Jrung by

ρ
(1)
red = 1

2L

(
1 − 4Jleg

Jrung(1 + �)

∑
m

[
(S+

mS−
m+1 + H.c.)

+ 1

2
(� + �2) Sz

mSz
m+1

])
, (8)

with L being the number of rungs. Again within first-order
perturbation theory, this result can be formulated as

ρ
(1)
red = 1

Z
exp

( − H(1)
ent

)
, (9)
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with Z = Tr exp(−H(1)
ent) being a partition function. The

entanglement Hamiltonian2 H(1)
ent is given as

H(1)
ent = 4

1 + �

Jleg

Jrung

×
∑
m

[
1

2
(S+

mS−
m+1 + H.c.) + �̃Sz

mSz
m+1

]
, (10)

and is of nearest-neighbor XXZ form, with a renormalized
anisotropy parameter,

�̃ = 1
2 (� + �2). (11)

Note that � = 0 (XX case) and � = 1 (Heisenberg inter-
actions) are invariant, i.e., the entanglement Hamiltonian is
proportional to the physical Hamiltonian restricted to the
block, as observed numerically for � = 1 earlier in Ref. 17.
Since in these two specific cases the physical Hamiltonian
on a chain and the entanglement Hamiltonian are simply
proportional to each other (to first order), one can define an ad
hoc inverse temperature

β = 4

1 + �

Jleg

Jrung
, (12)

such that H(1)
ent = β ĤXXZ , with a Jleg/Jrung dependence solely

in β.

B. Second order

The second-order contribution to the ground state is
somewhat lengthy and given in the Appendix. For general
anisotropy the result does not seem to be amenable to a simple
interpretation. In the isotropic case � = 1, however, one finds
up to second order,

ρ
(2)
red = 1

2L

{
1 − 2Jleg

Jrung

∑
m

	Sm
	Sm+1

+1

2

(
2Jleg

Jrung

)2([ ∑
m

	Sm
	Sm+1

]2

− 3

16
L

+1

4

∑
m

[	Sm
	Sm+2 − 	Sm

	Sm+1]

)}
, (13)

which can, within the same order, be reformulated as

ρ
(2)
red = 1

Z
exp

( − H(2)
ent

)
, (14)

with Z = Tr exp(−H(2)
ent) and

H(2)
ent = 2

Jleg

Jrung

∑
m

	Sm
	Sm+1

+1

2

(
Jleg

Jrung

)2 ∑
m

[	Sm
	Sm+1 − 	Sm

	Sm+2]. (15)

Thus, also within second order Jleg/Jrung the entanglement
Hamiltonian is quite similar to the physical Hamiltonian on a
single chain. The second-order correction contains a renormal-
ization of the amplitude of the nearest-neighbor coupling and
the appearance of an unfrustrated ferromagnetic next-nearest-
neighbor Heisenberg coupling. The latter observation is in

FIG. 3. (Color online) Filled circles: numerical entanglement
spectra obtained for an L = 8 system. For each Jleg/Jrung value
the entanglement spectrum has been rescaled to lie in the interval
[0,1]. Empty circles: rescaled energy spectrum of the analytical
second-order entanglement Hamiltonian, Eq. (15).

accordance with the numerical findings in Refs. 20 and 18.
We expect this picture to hold also at higher order. According
to general linked cluster ideas, sites at distance r will only
be able to couple starting at order r with a leading amplitude
proportional to ( Jleg

Jrung
)r . Given the Heisenberg nature of the

leg interactions, to leading order a Heisenberg interaction∑
m

	Sm
	Sm+r is the only symmetry-allowed interaction.

In Fig. 3 we present a comparison between the rescaled
numerical entanglement spectra for L = 8 and the perturbative
result in the form of the energy spectrum of Eq. (15) for
Jleg/Jrung � 1. The second-order corrections only seem to
become visible for this system size for Jleg/Jrung � 0.1, and
the initial deviations from a straight line in the numerics are
correctly described by the second-order corrections. However,
for larger Jleg/Jrung ratios further neighbor Heisenberg cou-
plings and multispin interactions become non-negligible, as
observed in Ref. 20.

IV. LIMIT OF WEAKLY COUPLED CHAINS

We now discuss the opposite limit of weakly coupled
chains. At the starting point Jrung/Jleg = 0 the ground state
is the product of the ground states of the individual chains.

|ψ0〉 = |0〉A|0〉B. (16)

In this limit the entanglement spectrum is trivial, composed
of only a single value ξ = 0.

To first order the wave function reads

|ψ1〉 = [1 − RQ0H0]|ψ0〉, (17)

where H0 is the Hamiltonian coupling the two chains
[cf. Eq. (1)], Q0 is the projector onto the subspace or-
thogonal to |ψ0〉, and R denotes the resolvent operator
R = (H1 − E0)−1.29
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After a straightforward calculation one obtains the follow-
ing expression for the first-order wave function |ψ1〉 in the
product basis of chain eigenfunctions:

|ψ1〉 = |0〉A|0〉B (18)

+ � Jrung

Jleg

∑
k

∑
n,n′ �=0

〈n|Sz
k |0〉A〈n′|Sz

−k|0〉B
�n + �n′

|n〉A|n′〉B

+ Jrung

Jleg

∑
k;α∈{x,y}

∑
n,n′ �=0

〈n|Sα
k |0〉A〈n′|Sα

−k|0〉B
�n + �n′

|n〉A|n′〉B

=
∑
n,n′

[ψ1]n,n′ |n〉A|n′〉B, (19)

where k runs over the lattice momenta of a single chain,
α runs over the spin components {x,y}, n and n′ label
the eigenfunctions of the two isolated chains, while �n(n′)
denotes the single-chain excitation energies En(n′) − E0. One
recognizes that the nontrivial part of the wave function is
composed of contributions which also enter the Lehmann
representation of the Sαα(k,ω) spectral functions of a single
chain,

Sα(k,ω) =
∑

n

∣∣ck,α
n

∣∣2
δ(ω − �n), (20)

ck,α
n = 〈n|Sα

k |0〉, (21)

where the matrix elements ck,α
n enter as

[ψ1]n,n′ = δn,0δn′,0 + �Jrung

Jleg

∑
k

ck,z
n c

k,z
n′

�n + �n′

+ 1

2

Jrung

Jleg

∑
k

ck,+
n c

−k,−
n′

�n + �n′
+ 1

2

Jrung

Jleg

∑
k

ck,−
n c

−k,+
n′

�n + �n′
.

(22)

Given the wave function in this form, the entanglement
spectrum can simply be obtained by a singular value decom-
position of the matrix [ψ1]n,n′ , which amounts to finding the
Schmidt decomposition in this bipartition. The singular values
are thus the Schmidt values, and when squared they correspond
to the eigenvalues of the reduced density matrix in the same
bipartition setup. Due to the translational invariance along the
chains as well as the total Sz-preserving form of the XXZ

Hamiltonians, the wave-function matrix exhibits a block-
diagonal structure in k and only n and n′ sectors with total Sz =
0, ± 1 appear. In the specific case of Heisenberg Hamiltonians
(� = 1) one can then infer by virtue of the Wigner-Eckart
theorem that only total spin S = 1 entanglement levels appear
above the singlet ground state to leading order. In addition,
the singlet ground state leads to vanishing spectral weight at
k = 0 and therefore the absence of S = 1 entanglement levels
at k = 0 to the expansion order considered.

In Fig. 4 we show a comparison between the numerical
entanglement spectrum for L = 8 at Jrung/Jleg = 0.0001 and
the prediction based on Eq. (22). The filled symbols represent
all the predicted entanglement levels appearing at this order.
The numerical results match perfectly the analytical prediction
up to the finite precision threshold of the numerics.

0 π/4 π/2 3π/4 π
chain momentum

0

20

40

60

80

ξ

Analytical prediction (S=0)

Analytical prediction (S=1)

Numerical ES (S=0)
Numerical ES (S=1) 

Jrung/Jleg=0.0001, L=8

FIG. 4. (Color online) Filled diamonds: entanglement spectrum
prediction for an L = 8 Heisenberg spin ladder, based on the
first-order perturbation theory in the coupling between the two chains
Eq. (22). Empty diamonds: S = 0 and S = 1 entanglement levels
obtained from exact diagonalization at Jrung/Jleg = 0.0001 (cf. upper
panel of Fig. 2). The gray region denotes the region where the
numerical entanglement spectrum is affected by the finite precision
arithmetics and where no numerical data is shown.

V. DISCUSSION AND CONCLUSION

In summary, we have investigated the entanglement spec-
tra of spin-1/2 XXZ ladders using both exact numerical
diagonalizations and perturbation theory approaches. In the
limit of strong rung coupling, perturbation theory predicts
in leading order an entanglement Hamiltonian being also of
nearest-neighbor XXZ form with a renormalized anisotropy
parameter. For XX and isotropic Heisenberg ladders no such
renormalization takes place and in this case one can define
an ad hoc effective temperature proportional to the Jrung/Jleg

ratio. Moreover, in next-to-leading order the entanglement
Hamiltonian exhibits spin couplings of longer range, and all
the above findings are in perfect agreement with our numerical
exact diagonalization results. The first-order perturbation
theory result has also been obtained in parallel work by Peschel
and Chung.18 Similar numerical observations have already
been made for quantum Hall bilayers at filling factor ν = 1.12

It remains an open task to devise analogous perturbational
arguments for such systems with long-ranged interactions.

In the opposite regime of strong coupling along the legs,
we point out an interesting connection of the entanglement
spectrum to the Lehmann representation of single-chain
spectral functions of the operators contained in the physical
Hamiltonian coupling the two chains. This aspect also holds
true for other ladder systems, such as, e.g., Hubbard ladders,
where the entanglement spectrum will be determined by
elements of the single-particle addition and removal of spectral
functions in the weakly coupled chain regime.
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APPENDIX: SECOND-ORDER CORRECTION TO THE GROUND STATE AND THE REDUCED DENSITY MATRIX

The second-order correction to the ground state can be obtained as

|2〉 =
(

Jleg

Jrung

)2 ∑
|m−n|>1

[
1

4(1 + �)2
(|t+m ,t−m+1,t

+
n ,t−n+1〉 + |t+m ,t−m+1,t

−
n ,t+n+1〉)

− �

4(3 + �)

(
1

2
+ 1

1 + �

) (∣∣t+m ,t−m+1,t
0
n ,t0

n+1

〉 + ∣∣t−m ,t+m+1,t
0
n ,t0

n+1

〉) + �2

32

∣∣t0
m,t0

m+1,t
0
n ,t0

n+1

〉]

+
(

Jleg

Jrung

)2 ∑
m

[
− 1

2(1 + �)2
(|t+m ,t−m+2〉 + |t−m ,t+m+2〉) + �2

8

∣∣t0
m,t0

m+2

〉]

+
(

Jleg

Jrung

)2 ∑
m

[
�

8(1 + �)

(
1

2
+ 1

1 + �

)
(|t+m ,t−m+1〉 + |t−m ,t+m+1〉) − 1

4(1 + �)

∣∣t0
m,t0

m+1

〉]

−
(

Jleg

Jrung

)2
L

8

(
2

(1 + �)2
+ �2

4

)
|0〉. (A1)

Note that no terms with an odd number of triplets occur. In the isotropic Heisenberg case � = 1, the second-order contribution
to the reduced density matrix is the sum of the following expressions:

Tr1 leg (|0〉〈2| + |2〉〈0|) =
(

Jleg

Jrung

)2 1

2L

( ∑
|m−n|>1

(	Sm
	Sm+1)(	Sn

	Sn+1) +
∑
m

[	Sm
	Sm+2 − 	Sm

	Sm+1] − 3

16
L

)
, (A2)

Tr1 leg (|1〉〈1|) =
(

Jleg

Jrung

)2 1

2L

( ∑
|m−n|>1

(	Sm
	Sm+1)(	Sn

	Sn+1) + 1

2

∑
m

[	Sm
	Sm+2 − 	Sm

	Sm+1] + 3

16
L

)
. (A3)

Now using the identities

1
2
	S1 	S3 = (	S1 	S2)(	S2 	S3) + (	S2 	S3)(	S1 	S2) (A4)

and
3
16 − 1

2
	S1 	S2 = (	S1 	S2)2 (A5)

for spin-1/2 operators, one derives the result (13).
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