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We compute the dynamical polarizability of graphene beyond the usual Dirac cone approximation, integrat-
ing over the full Brillouin zone. We find deviations at ��=2t �where t is the hopping parameter� which amount
to a logarithmic singularity due to the Van Hove singularity and derive an approximate analytical expression.
Also at low energies, we find deviations from the results obtained from the Dirac cone approximation which
manifest themselves in a peak spitting at arbitrary direction of the incoming wave vector q. Consequences for
the plasmon spectrum are discussed.
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I. INTRODUCTION

Graphene is a novel two-dimensional �2D� system with
many outstanding mechanical and electronic properties.1 Es-
pecially the early observation of the ambipolar field effect2

and of the odd integer quantum Hall effect3 have stimulated
enormous research on the electronic structure of graphene.
Only recently, the fractional quantum Hall effect was seen in
suspended graphene.4 For a review of this newly emerging
branch of condensed-matter physics, see Ref. 5.

To understand the unusual electronic properties of
graphene, it often suffices to discuss the charge susceptibil-
ity. The static polarizability at kF, e.g., gives the Thomas-
Fermi screening length, important for transport properties6–8

whereas the dynamical polarizability at zero wave number
can explain the phonon softening9 at the � point. It is also
used for the understanding of structural inhomogeneities in
graphene, so-called ripples10 and the van der Waals interac-
tion between graphene layers.11

For neutral graphene, the polarizability at zero tempera-
ture was first calculated by González et al.,12 the effect of
temperature was discussed by Vafek13 and vertex corrections
were considered in Ref. 14. For a gated system with finite
chemical potential, the first expressions were given by
Shung15 in the context of graphite and later by Wunsch et
al.16 and Hwang and Das Sarma.17 Also the extension to
finite temperature has been performed, even though a closed
analytical expression is then—as in the neutral case—not
possible, anymore.18 Recently, the polarizability was discuss
in the presence of a magnetic field19 and gapped
graphene.20,21

All these results originate from the Dirac cone approxi-
mation in which the energy dispersion of the hexagonal lat-
tice is linearized around one of the two Dirac points where
the valence and conduction bands touch. But corrections to
this approximation have to be included to discuss, e.g., the
recently measured absorption of suspended graphene in the
visible-optics regime,22 which is related to polarizability via
the continuity equation. This has been done in a perturbative
treatment in Ref. 23. The optical properties of graphite were
calculated in Ref. 24.

Here, we want to extend the previous calculations to the
full Brillouin zone of the hexagonal tight-binding model. We

certainly expect deviations at large energies where the Dirac
approximation does not hold anymore. But the main purpose
is to test whether the diverging density of states at the M
point �Van Hove singularity� leads to consequences on the
collective excitations of this system.

Our interest is motivated by the recent findings of an ad-
ditional plasmon mode that emerges at around 4.7 eV with a
linear dispersion25 which was observed on freestanding
graphene by electron energy-loss spectroscopy.26 A first
guess is to associate this mode to the Van Hove singularity
which in the charge susceptibility shows up at 2t�5.4 eV, t
denoting the tight-binding hopping parameter. Including ex-
citonic effects, the prominent absorption peak shifts to 4.5
eV,27 thus suggesting that the Van Hove singularity is indeed
the origin for this new plasmon mode.

Apart from the high-energy corrections stemming from
interband transitions, we also look at the intraband contribu-
tion at low energies and find that even there deviations from
the Dirac cone approximation occur. By this, we complement
a recent work, where the plasmon dispersion is discussed by
also considering the full Brillouin zone.28

The paper is organized as follows. In Sec. II, we introduce
the model and notation and define the polarizability of
graphene. In Sec. III, we discuss the imaginary part of the
polarizability which will only involve one numerical integra-
tion. We first treat the interband contribution where we espe-
cially focus on the behavior around the M point where the
Van Hove singularity occurs. We then discuss the intraband
contribution and the different behavior at certain directions
of the incoming wave vector q. In Sec. IV, we obtain the real
part of the polarizability via the Kramers-Kronig relation and
discuss implications on the modified plasmon spectrum due
to the inclusion of the whole Brillouin zone. We close with
conclusions in Sec. V and give details on the analytical
evaluation of the polarizability around the M point in the
Appendix.

II. EFFECTIVE MODEL AND THE POLARIZABILITY OF
GRAPHENE

The Hamiltonian of a hexagonal graphene sheet in Bloch
spinor representation is given by
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H = �
k

�− tHk − �12�2�, Hk = �k
†� 0 �k

�k
� 0

��k �1�

with t�2.7 eV the tight-binding hopping parameter, � the
chemical potential, and �k= �ak ,bk�T, where ak and bk being
the destruction operators of the Bloch states of the two tri-
angular sublattices, respectively. Further, we have �k
=�	i

e−i�	i−	3�·k, where 	i denote the three nearest-neighbor
vectors. Here we choose them to be

	1 =
a

2
�− 1,�3�, 	2 =

a

2
�− 1,− �3�, 	3 = a�1,0� �2�

with a=1.42 Å being the nearest carbon-carbon distance.
The Brillouin zone is then defined by the two vectors b1
=2
 / �3a��1,�3� and b2=2
 / �3a��1,−�3�, see Fig. 1�a�.
The dimensionless eigenenergies thus read

��k� = �3 + 2 cos��3kya� + 4 cos��3kya/2�cos�3kxa/2� .

�3�

In terms of the bosonic Matsubara frequencies �n=2
n /�
��=1 /kBT and �=1�, the polarizability in first order is de-
fined as

P�1��q,i�n� =
1

A
	

0

�

d�ei�n�
�q,���− q,0�� , �4�

where A denotes the area of the graphene sample and the
density operator is defined as q=q

a +eiq·	3q
b with q

c

=�k,�ck,�
† ck+q,� �c=a and b�.

Hence, we obtain the general expression for the polariz-
ability

P�1��q,i�n� =
− gs

�2
�2	
1BZ

d2k �
s,s�=�

fs·s��k,q�

�
nF�Es�k� − nF�Es��k + q�

Es�k� − Es��k + q� + i�n

�5�

with E��k�= � t��k�−� and nF�E� the Fermi function. For
the band overlap, we have

f��k,q� =
1

2
�1 � Re�eiq·	3

�k

��k�
�k+q

�

��k+q��� . �6�

Note that since we are summing over the entire Brillouin
zone, only the spin degeneracy gs=2 has to be taken into
account.

For neutral graphene, �=0, there is no intraband contri-
bution due to the canceling Fermi functions in the numerator
of Eq. �5�. Due to f−�k ,q→0�→0, we further expect no
interband contribution for q=0. We finally note that for high
energies �� t, the phase factor between the particle densities
of the two sublattices, eiq·	3, is crucial even in the long-
wavelength limit q→0.

III. IMAGINARY PART OF THE POLARIZABILITY

With the substitution i�n→�+ i0, the imaginary part of
the retarded susceptibility is written in terms of a delta func-
tion in the usual way. Determining the zeros of the argument
of the delta function allows us to perform the integration
over kx analytically. The subsequent integration over ky is
then done numerically. We have also performed the direct
summation of Eq. �5� of a finite system to check our results.

The integration over the Brillouin zone can be split up
into separate parts with slight modifications of the integrand
�see below and Fig. 1�b�. The final domain is then given by
0�3kxa /2�
 /2 and 0��3kya /2�
 /2 and the substitu-
tion x=sin�3kxa /2� and y=sin��3kya /2� can be performed.
The resulting expression �see Eq. �8� explicitly displays the
inversion symmetry of q with respect to the qx and qy axes.
The polarizability P�1��q ,�� is also invariant under rotation
of 
 /3, displaying the underlying lattice symmetry. We thus
find the following symmetry:

P�1���q�,
/6 + �̃,�� = P�1���q�,
/6 − �̃,�� . �7�

The subsequent plots thus only show four representative
curves with 0���
 /6.

A. Interband transitions

We shall first discuss the contribution of the interband
transitions to the imaginary part of the polarizability. As ex-
plained above, we first perform the integral over kx→x, thus
eliminating the delta function. For neutral graphene, �=0, at
zero temperature T=0 this yields the following expression:

Im P�1��q,��

=
2 sgn���

�2
�2


�3

t
� 2

3a
�2	

0

1 dy
�1 − y2

� �
j=�

�
s,s�=�

�
0�xi�1

Fj�xi,y ;sqx,s�qy�

�1 − xi
2� d

dx
hj�x,y ;sqx,s�qy��xi

� ,

�8�

where we defined

hj�x,y ;qx,qy� = �� j�x,y ;0,0�� + �� j�x,y ;qx,qy�� − ��� �9�

with
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FIG. 1. �a� The hexagonal and �b� rhombical Brillouin zone. The
symmetrized rhombical Brillouin zone and its segmentation. The
inner square refers to j=−, the outer triangles refer to j=+; addi-
tionally the values of s and s� are given.
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�� j�x,y ;qx,qy�� = �3 + 2�1 − y2�cos�2q̃y� − 4�1 − y2y sin�2q̃y�

+ j4��1 − x2cos�q̃x� − x sin�q̃x�

���1 − y2cos�q̃y� − y sin�q̃y��1/2 �10�

and

Fj�x,y ;qx,qy� =
1

2
�1 −

F̃j�x,y ;qx,qy�
���x,y ;0,0�����x,y ;qx,qy��

�
�11�

with

F̃j�x,y ;qx,qy� = cos�2q̃x/3� + j2�1 − y2 � ��1 − x2cos�2q̃x/3�

− x sin�2q̃x/3� + 2�2�1 − y2cos�q̃x/3�

+ j��1 − x2cos�q̃x/3� − x sin�q̃x/3��

���1 − y2cos�q̃y� − y sin�q̃y� . �12�

Above, we also introduced q̃x=3qxa /2 and q̃y =�3qya /2.
Furthermore, the sum over xi is over all zeros which satisfy

hj�xi,y ;qx,qy� = 0, �13�

which can be written as a polynomial of fourth order. The
zeros xi can thus be obtained analytically such that only the
subsequent integration over y has to be performed numeri-
cally.

On the left-hand side of Fig. 2, the imaginary part of the
polarizability Im P�1���q� ,� ,�� as a function of the energy �
is shown for different directions of the incoming wave vector
q with �q�a=0.1, where the usual parametrization in terms of
the polar angle � with qx= �q�cos � is used. There is no ap-
parent angle dependence except for the region around the

Van Hove singularity which is highlighted in the inset. The
result obtained from the Dirac cone approximation is also
shown �dashed line�, which is given by12

Im P0,Dirac
�1� ��q�,�� =

1

4

�q�2

��2 − �3t�q�a/2�2
. �14�

For low energies, there is good agreement with the above
formula but especially for energies close to the Van Hove
singularity, �=2t, strong deviations are seen which shall be
discussed in the following in more detail.

1. Expansion around the Van Hove singularity

The new feature compared to the Dirac cone approxima-
tion comes from the region around the Van Hove singularity,
located at the M points of the Brillouin zone. For the Bril-
louin zone defined above, the M points are located at M0
=2
 / �3a��1,0� and M�=
 / �3a��1, ��3�.

In the following, we introduce the substitutions p̃x
=3pxa /2 and p̃y =�3pya /2 and shall assume p̃x, p̃y �1 for
p=k and q. Expanding around the M0 point, the dispersion
then simplifies to

�k
M0 � − 1 − i2k̃x + k̃x

2 + k̃y
2, �15�

��k
M0� � 1 + k̃x

2 − k̃y
2 �16�

and the band overlap yields

f−
M0�k,q� � 4q̃x

2/9. �17�

For the M� point, we obtain

�k
M� � 1 � i2k̃y � 2k̃xk̃y , �18�

��k
M�� � 1 � 2k̃xk̃y + 2k̃y

2 �19�

and the band overlap yields

f−
M��k,q� � �q̃x/3 � q̃y�2. �20�

For qy =0 ��=0�, an analytical approximation similar to that
presented in Ref. 29 is possible for the M0 point expansion
since the polynomial in the delta function is quadratic. This
yields a logarithmic divergence at �M / t= �̃M =2+ q̃x

2 /2 which
can be approximated by the following expression:

Im P�1�,M0�qx,�� �
2 sgn���

�2
�2


�3

t
� 2

3a
�2 q̃x

2

18

��ln�8�2

q̃x
2 � + ln� 2�2q̃x

2

��̃ − �̃M�2�� ,

�21�

where � denotes a suitable cutoff. Details on the calculation
are given in the Appendix. For general q or for the M� point
expansion, we expect a similar behavior.

In the inset of Fig. 2, the region around the Van Hove
singularity which is highlighted. For a general angle �, all
three M points contribute and there is a prominent double or
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FIG. 2. �Color online� Left-hand side: the imaginary part of the
polarizability Im P�1���q� ,� ,�� as a function of the energy � at
kBT / t=0.01 for different angles � with �q�a=0.1. The result ob-
tained from the Dirac cone approximation is also shown �dashed
line�. Inset: energy region around the Van Hove singularity of the
same curves. Right-hand side: the imaginary part of the polarizabil-
ity Im P�1��q ,�� as a function of the energy � at kBT / t=0.01 for
various wave vectors q defined in the text.
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even triple peak structure. But for �=
 /6,
 /2, . . ., the over-
lap function of one M point vanishes and the peaks merge.

2. Behavior at large q

Let us now discuss the behavior for general q at �=0. For
that we expand the energy dispersion ��k+q� around the
points of high symmetry k=S=�, K, and M, and determine
the q vector for which ��q

S�=0. To discuss the dielectric func-
tion at large wave vectors �q��1 /a, also local-field effects
have to be taken into account,30 as was done in Ref. 31.

Expanding the dispersion around �= �0,0� and K
=2
 / �3a��1,1 /�3�, we find that for q=K, ��q

�,K�=0. The
spectrum of Im P�1� thus starts at �=0. Expanding the dis-
persion around the M0 point, the wave vectors q1

M0

=2
 / �3a��0,1 /�3� and q2
M0 =2
 / �3a��1,2 /�3� yield ��q

M0�
=0 and the spectrum of Im P�1� thus starts at �= t. For the
M�-point expansion, we obtain ��q

M��=0 for q=M�.
On the right-hand side of Fig. 2, the imaginary part of the

polarizability is shown for the above wave vectors q. The
curves for the M�-point expansion yield the same curves as
the ones for the M0-point expansion and are not listed. For
comparison, we also show the behavior for one of the vectors
which define the Brillouin zone, q=b1, which �for T=0� is
identical to the density of states by rescaling �→� /2.

B. Intraband transitions

For finite chemical potential ��0, there are also intra-
band transitions. The extension of Eq. �8� to finite chemical

potential � and finite T is straightforward. The main differ-
ence is that the function of Eq. �9� now reads

hj�x,y ;qx,qy� = �� j�x,y ;0,0�� − �� j�x,y ;qx,qy�� � ��� .
�22�

This expression suggests that there might be differences to
the Dirac cone approximation also for small �. In fact, even
for wave vectors �q� and chemical potential � for which the
Dirac cone approximation holds �e.g., �q�a=0.1 and � / t
=0.05�, we find deviations from the Dirac cone result.

Let us first start the discussion by summarizing the results
coming from the Dirac cone approximation from Ref. 16 for
which we introduce the functions

f��q�,�� =
1

4


�q�2

���2 − �3t�q�a/2�2�
,

G��x� = x�x2 − 1 − cosh−1�x�, x � 1,

G��x� = x�1 − x2 − cos−1�x�, �x� � 1. �23�

Due to the finite chemical potential, the polarizability is now
given by Im P�,Dirac

�1� =Im P0,Dirac
�1� +Im �P�,Dirac

�1� and with �q
D

=3t�q�a /2 the additional term reads

Im �P�,Dirac
�1� ��q�,�� = f��q�,�� ��

G��2� + �

�q
D � − G��2� − �

�q
D � , � � �q

D ∧ � � 2� − �q
D

− 
 , � � �q
D ∧ � � 2� − �q

D

G��2� + �

�q
D � , � � �q

D ∧ � � �q
D − 2�

G��� − 2�

�q
D � , � � �q

D ∧ � � �q
D + 2�

0, otherwise

� . �24�

A distinct signature of noninteracting 2D electrons in
graphene is a divergent behavior of the polarizability or
charge susceptibility at the threshold for the excitation of
electron-hole pairs at �q

D, see Eq. �14�. This divergence is
also present for gated or doped graphene with ��0 and has
been usually attributed to the absence of curvature in the
spectrum. But even in the regime where the Dirac cone ap-
proximation does not hold, i.e., curvature in form of trigonal
warping has to be taken into account, we find a divergent
behavior at �q

D for q=qx. For arbitrary direction, we find a
peak splitting even in the Dirac cone regime.

Let us discuss the polarizability using the full Brillouin
zone in more detail. As stated above, P�1��q ,�� is invariant
under rotation of 
 /3—independent of the chemical poten-

tial and we also find the symmetry of Eq. �7�. The numerical
results moreover suggest that for moderate chemical poten-
tial �� t the angle-dependent polarizability can be described
by a single function where the angle �̃ only enters as param-
eter.

In Fig. 3, Im P�1��q ,� ,�� with �q�a=0.01 as a function of
the energy � is shown for various angles � and two chemical
potentials � / t=0.05 �left� and � / t=0.5 �right� at kBT / t
=0.01. Only in the direction of qx, i.e., �=0, there is agree-
ment with the analytical result of Eq. �24� coming from the
Dirac cone approximation at zero temperature. Interestingly,
this is also the case for a large chemical potential � / t=0.5,
where trigonal warping effects should come into play. For
arbitrary direction, a double-peak structure appears even for

STAUBER, SCHLIEMANN, AND PERES PHYSICAL REVIEW B 81, 085409 �2010�

085409-4



small chemical potential � / t=0.05 for which the Dirac cone
approximation should hold.

In Fig. 4, the same quantities are shown for larger chemi-
cal potentials � / t=1 �left� and � / t=1.5 �right�. The differ-
ences to the analytical result coming from the Dirac cone
approximation �dashed line� now become apparent also for
q=qx ��=0�. For � / t=1 they manifest themselves at lower
energies ���q

D and for � / t=1.5, a double-peak structure
emerges. But interestingly, the divergence still occurs at �
��q

D in both cases.
The above curves were obtained for kBT / t=0.01, thus

slightly larger than room temperature, but we have also in-
vestigated the effect of different T. We find that the curves

for �=0 are basically unaffected by temperature but that for
arbitrary direction the algebraic divergences seen for � / t
=0.5 or � / t=1 are smeared out at larger temperature as it is
the case for � / t=0.05. On the contrary, the curves for � / t
=0.05 and ��0 develop the algebraic divergence for de-
creasing temperature. Generally, we can say that the alge-
braic divergences become broadened when the energy set by
the temperature is much larger that maximal peak splitting at
�=
 /6. Nevertheless, the peak splitting in directions of
lower symmetry prevails also at elevated temperatures.

IV. REAL PART OF THE POLARIZABILITY

The real part of the polarizability shall be obtained nu-
merically via the Kramers-Kronig relation

Re P�1��q,�� =
1



	

0

6t

d�� Im P�1��q,���
2��

��2 − �2 .

�25�

The left-hand side of Fig. 5 shows Re P�1���q� ,� ,�� for en-
ergies close to the Van Hove singularity with �q�a=0.1 and
�=0 for different angles �. As expected, there are strong
deviations with respect to the result coming from the Dirac
cone approximation and the functions become negative. This
opens up the possibility of the emergence of an additional
plasmon mode since the plasmon dispersion in the random-
phase approximation �RPA� approximation is given by the
relation

�� + vqP�1��q,�� = 0, �26�

where �� denotes the effective dielectric constant including
high-energy screening processes. Since the experiments in
Ref. 26 were done on suspended graphene, we set ��=1. For
the Coulomb interaction, we set �q�vq=e2 /2�0=90 eV Å
�16�vF�24ta. For �q�a=0.1, ta2 /vq=0.004 never crosses
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FIG. 3. �Color online� The imaginary part of the polarizability
Im P�1���q� ,� ,�� with �q�a=0.01 as a function of the energy � for
various angles � and two chemical potentials � / t=0.05 �left� and
� / t=0.5 �right� at kBT / t=0.01. Also shown is the analytical result
coming from the Dirac cone approximation at zero temperature
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FIG. 5. �Color online� The real part of the polarizability
Re P�1���q� ,� ,�� as a function of the energy � for various angles �
at kBT / t=0.01. Left: for energies close to the Van Hove singularity
with �q�a=0.1 and �=0. Right: for low energies with �q�a=0.01 and
� / t=0.05. Also shown is the analytical result coming from the
Dirac cone approximation at zero temperature �dashed line�.
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one of the several curves which all tend to zero for larger
energies. With the bare hopping amplitude t�2.7 eV, we do
thus not find an additional pole in the RPA susceptibility.

Still, there is a renormalization of the hopping amplitude
which comes from the wave-function renormalization of the

 electrons. Near the Van Hove singularity, this renormaliza-
tion will be large and the matrix element will be reduced.
With a renormalization of t→2t /3, we would find an addi-
tional pole in the plasmon dispersion, consistent with experi-
ments.

We also expect deviations from the simple one-particle
spectrum around �=2t because expanding the effective
screened Coulomb potential within the RPA approximation,
we have

Im
vq

��q,��
= Im

vq

�0 + vqP�1��q,��
, �27�

�− �vq/�0�2Im P�1��q,�� . �28�

As can be seen from Eq. �21�, there is a logarithmic diver-
gence at �M / t=2+ �3qxa�2 /8 even for qx→0 since the pref-
actor from the band overlap is canceled by vq

2.
The right-hand side of Fig. 5 shows the real part of the

polarizability Re P�1���q� ,� ,�� with �q�a=0.01 and � / t
=0.05 for different angles �. For these parameters, the Dirac
cone approximation is supposed to hold but strong deviations
are seen for ��0 as in the case of the imaginary part. This
opens up the possibility of a modified plasmon dispersion as
discussed in Ref. 28. But for the present parameters, we do
not find an additional zero in the RPA dielectric function, i.e.,
ta2�� /vq=0.0004�� crosses all curves at the same energy
�choosing, e.g., the high-frequency dielectric constant of sili-
con ��=2�. Nevertheless, for larger wave numbers �q�a
�� / t, deviations are seen, i.e., the plasmon dispersion is
more strongly damped and eventually vanishes since the
square-root singularity is smeared out.

In Fig. 6, the real part of the polarizability is shown for
two large chemical potentials � / t=1 �left� and � / t=1.5
�right�. As for the imaginary part, large deviations compared
to the results coming from the Dirac cone approximation
�dashed line� are seen. First, the static value P�1���q� ,� ,�
=0� is larger than ta2 Re P�,Dirac

�1� ��q� ,�=0�= 8
9
� / t. Since the

static value of the polarizability enters in the expression of
the screened Coulomb potential, it is independent of the po-
lar angle �, consistent with group theory. Second, there are
additional zeros of the real part of the RPA dielectric func-
tion, i.e., ta2�� /vq=0.0004�� �set, e.g., ���2� crosses the
curves at various energies different from the one associated
with the Dirac cone approximation. Nevertheless, they lie in
the region where Im P�1� is finite and the new plasmon
modes are thus damped.

For the present parameters, the undamped solution occurs
at slightly larger energy compared to the Dirac cone approxi-
mation but is independent of the direction �. For larger wave
numbers �q�a�� / t, stronger deviations are seen, i.e., the
plasmon dispersion depends on � is more strongly damped
and eventually vanishes.

V. CONCLUSIONS

We discussed the polarizability of graphene using the full
band structure of the 
 electrons. We especially focused on
the features around the Van Hove singularity since they
might be responsible for the newly found plasmon disper-
sion. We find that there are no plasmon modes coming from
the Van Hove singularity within the RPA approximation with
the bare hopping amplitude t. But with a renormalization of
t→2t /3, there are additional plasmon modes, consistent with
experiment.26 We also find a logarithmic divergence of the
imaginary part of the effective Coulomb interaction. This
will lead to prominent electron-hole interactions as was re-
cently found in Ref. 27.

We also looked at the intraband contribution to the polar-
izability. For q in the �-M direction, we find basic agreement
with the results of the Dirac cone approximation even for
rather large chemical potential �� t /2, i.e., when corrections
to the linear Dirac spectrum are large. For arbitrary direction
of the incoming wave vector q, we surprisingly found strong
deviations from the results coming from the Dirac cone ap-
proximation where a double-peak structure emerges. The
peak splitting occurs for all values of ��0 and is a direct
consequence of the energy dispersion. For fixed q and �, it is
largest for �=
 /2 and tends to zero for �q�, �→0. As a
consequence, the plasmon dispersion is more strongly
damped for �q�a�� / t and eventually vanishes at larger tem-
peratures since the square-root singularities are smeared out.
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APPENDIX

For qy =0 and using the saddle-point approximation of Eq.
�16�, an analytical calculation of the imaginary part of the
polarizability around the M0 point is possible. The integral is
preformed in polar coordinates and with x=cos �, we have
to solve the following quadratic equation with respect to x:

��k
M0� + �k+qx

M0 �− �̃ = 4k2x2 � 2kq̃xx + � = 0 �A1�

with �=2�1−k2− �̃ /2+ q̃x
2�, �̃= �� / t�, and q̃x=3qxa /2. The

integral over � eliminates the delta function and yields

Im P�1�,M0�qx,�� =
gs sgn���

�2
�2


�3

t
� 2

3a
�28

9
q̃x

2

��I+�q̃x,�̃� + I−�q̃x,�̃� , �A2�

where we included the spin degeneracy gs=2 and defined the
following integrals:

I��q̃x,�̃� = 	
D��q̃x,�̃�

dkI��k; q̃x,�̃� �A3�

with

I��k; q̃x,�̃� =
k

�8�k2 − kmin
2 �

�
1

�8�k2 − �2� � 2q̃x
�8�k2 − kmin

2 �
�A4�

and the integration domains

D+�q̃x,�̃� = ��kmin,�; �̃ � 2 + 5q̃x
2/8

�k−,�; �̃ � 2 + 5q̃x
2/8� �A5�

and

D−�q̃x,�̃� =�
�kmin,�; �̃ � 2 + q̃x

2/2
�kmin,k− � �k+,�; 2 + q̃x

2/2 � �̃

�2 + 5q̃x
2/8

�k+,�; �̃ � 2 + 5q̃x
2/8
� .

�A6�

We further defined �2=−q̃x
2 /4−1+ �̃ /2, kmin

2 =q2 /8−�2, k�

= ��� q̃x /2�, and � denotes a suitable cutoff.
The indefinite integral has the following solution:

	 dkI��k; q̃x,�̃� =
1

8
ln�� q̃x + �8�k2 − kmin

2 �

+ �8�k2 − �2� � 2q̃x
�8�k2 − kmin

2 �� .
�A7�

There is a logarithmic singularity at �̃M =2+ q̃x
2 /2. Expand-

ing the above result around �̃M yields the simple expression

Im P�1�,M0�qx,�� �
gs sgn���

�2
�2


�3

t
� 2

3a
�2 q̃x

2

18

��ln�8�2

q̃x
2 � + ln� 2�2q̃x

2

��̃ − �̃M�2�� .

�A8�
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