807 research outputs found
Precise measurement of CMB polarisation from Dome-C: the BRAIN and CLOVER experiments
SF2A-2004: Semaine de l'Astrophysique Francaise, meeting held in Paris, France, June 14-18, 2004.The characterisation of CMB polarisation is one of the next challenge in observationnal cosmology. This is especially true for the so-called B-modes that are at least 3 order of magnitude lower than CMB temperature fluctuations. A precise measurement of the angular power spectrum of these B-modes will give important constraints on inflation parameters. In this talk, I will describe two complementary experiments, BRAIN and CLOVER, dedicated to CMB polarisation measurement. These experiments are proposed to be installed in Dome-C, Antarctica, to take advantage of the extreme dryness of the atmosphere and to allow long integration time
Cosmic Background dipole measurements with Planck-High Frequency Instrument
This paper discusses the Cosmic Background (CB) dipoles observations in the
framework of the Planck mission. Dipoles observations can be used in three
ways: (i) It gives a measurement of the peculiar velocity of our Galaxy which
is an important observation in large scale structures formation model. (ii)
Measuring the dipole can give unprecedent information on the monopole (that can
be in some cases hard to obtain due to large foreground contaminations). (iii)
The dipole can be an ideal absolute calibrator, easily detectable in
cosmological experiments. Following the last two objectives, the main goal of
the work presented here is twofold. First, we study the accuracy of the
Planck-HFI calibration using the Cosmic Microwave Background (CMB) dipole
measured by COBE as well as the Earth orbital motion dipole. We show that we
can reach for HFI, a relative calibration between rings of about 1% and an
absolute calibration better than 0.4% for the CMB channels (in the end, the
absolute calibration will be limited by the uncertainties on the CMB
temperature). We also show that Planck will be able to measure the CMB dipole
direction at better than 1.7 arcmin and improve on the amplitude. Second, we
investigate the detection of the Cosmic Far-Infrared Background (FIRB) dipole.
Measuring this dipole could give a new and independent determination of the
FIRB for which a direct determination is quite difficult due to Galactic dust
emission contamination. We show that such a detection would require a Galactic
dust emission removal at better than 1%, which will be very hard to achieve.Comment: 10 pages, 13 figures, submitted to A&A, uses aa.sty V5.
Sensitivity of a Bolometric Interferometer to the CMB power spectrum
Context. The search for B-mode polarization fluctuations in the Cosmic
Microwave Background is one of the main challenges of modern cosmology. The
expected level of the B-mode signal is very low and therefore requires the
development of highly sensitive instruments with low systematic errors. An
appealing possibility is bolometric interferometry. Aims. We compare in this
article the sensitivity on the CMB angular power spectrum achieved with direct
imaging, heterodyne and bolometric interferometry. Methods. Using a simple
power spectrum estimator, we calculate its variance leading to the counterpart
for bolometric interferometry of the well known Knox formula for direct
imaging. Results. We find that bolometric interferometry is less sensitive than
direct imaging. However, as expected, it is finally more sensitive than
heterodyne interferometry due to the low noise of the bolometers. It therefore
appears as an alternative to direct imagers with different and possibly lower
systematic errors, mainly due to the absence of an optical setup in front of
the horns.Comment: 5 pages, 3 figures. This last version matches the published version
(Astronomy and Astrophysics 491 3 (2008) 923-927). Sensitivity of Heterodyne
Interferometers modified by a factor of tw
Analysis of multiple cracking in metal/ceramic composites with lamellar microstructure
Financial support of this research by The Royal Society, UK (IE121116), The Carnegie Trust for the Universities of Scotland, UK (Trust Reference 31747) and DFG (PI 785/3-2, PI 785/1-2), Germany, is gratefully acknowledged. We thank Dr. S. Roy (KIT) for providing the microstructure images and Professor I. Tsukrov (University of New Hampshire, USA) for helpful discussions.Peer reviewedPostprin
Nondissipative Addressing for Time-Division SQUID Multiplexing
International audienceRecent and future astronomical instruments are based on a focal plane mapped by a large array of superconducting bolometers. Cryogenic analog multiplexing readout techniques, based on superconducting quantum interference devices (SQUIDs), are currently developed to achieve the readout of large arrays of this kind of low noise background-limited detectors. To effectively reduce the number of cryogenic wires (particularly, SQUID biasing), line/column addressing is currently used in time-division multiplexing, i.e., same biasing is applied to a few SQUIDs (on a line) of different columns. This technique should dramatically increase power consumption if parallel biasing is applied via resistors to isolate each column; the power budget is particularly limited on this kind of front-end cryogenic readout. A design with one transformer per SQUID is also used to read out SQUID biased in series with no excess of consumption and crosstalk. We propose here a new biasing technique using simple surface-mounted capacitors, which is easier to implement. These capacitors are used to parallel bias SQUIDs without additional Joule effect while minimizing crosstalk. However, capacitors do not allow dc biasing and need a current mean value equal to zero to avoid biasing source saturation. We have then tested square current biasing through capacitors on a commercial SQUID. This measurement shows that capacitors are able to proper bias SQUID and then to perform a nondissipative addressing for time-division SQUID multiplexing
About the connection between the power spectrum of the Cosmic Microwave Background and the Fourier spectrum of rings on the sky
In this article we present and study a scaling law of the CMB
Fourier spectrum on rings which allows us (i) to combine spectra corresponding
to different colatitude angles (e.g. several detectors at the focal plane of a
telescope), and (ii) to recover the power spectrum once the
coefficients have been measured. This recovery is performed numerically below
the 1% level for colatitudes degrees. In addition, taking
advantage of the smoothness of the and of the , we provide
analytical expressions which allow to recover one of the spectrum at the 1%
level, the other one being known.Comment: 8 pages, 8 figure
- âŠ