16 research outputs found

    In ovo yolk carotenoid and testosterone levels interactively influence female transfer of yolk antioxidants to her eggs

    Get PDF
    This is the author accepted manuscript. The final version is available from the Royal Society via the DOI in this recordMothers can influence prenatal conditions by varying the amount of nutrients, hormones or antioxidants they provide to their developing young. Some of these substances even affect the transfer of these compounds in the next generation, but it is less clear how different maternally transmitted compounds interact with each other to shape reproductive resource allocation in their offspring. Here, we found that female Japanese quail that were exposed to high carotenoid levels during embryonic development transferred lower concentrations of yolk antioxidants to their own eggs later in life. This effect disappeared, when both testosterone and carotenoid concentrations were manipulated simultaneously, showing long-term and interactive effects of these maternally derived egg components on a female’s own egg composition. Given that exposure to high levels of testosterone during embryo development stimulates the production of reactive oxygen (ROS) and impairs antioxidant defenses, we propose that carotenoids act as in-ovo antioxidants in an oxidatively stressful environment (i.e. when levels of testosterone are high) but might have prooxidant properties in an environment where they are not used to counteract an increased production of ROS. In line with this hypothesis, we previously showed that prenatal exposure to increased concentrations of yolk carotenoids leads to a rise of oxidative damage at adulthood, but only when yolk testosterone concentrations were not experimentally increased as well. As a consequence, antioxidants in the body may be used to limit oxidative damage in females exposed to high levels of carotenoids during development (but not in females exposed to increased levels of both carotenoids and testosterone), resulting in lower amounts of antioxidants being available for deposition into eggs. Since prenatal antioxidant exposure is known to influence fitness-related traits, the effect detected in this study might have transgenerational consequences.The study was supported by the Swiss National Science Foundation (PP00P3_128386 and PP00P3_157455) and the Fonds zur Förderung des akademischen Nachwuchses

    Elevated Plasma Corticosterone Decreases Yolk Testosterone and Progesterone in Chickens: Linking Maternal Stress and Hormone-Mediated Maternal Effects

    Get PDF
    Despite considerable research on hormone-mediated maternal effects in birds, the underlying physiology remains poorly understood. This study investigated a potential regulation mechanism for differential accumulation of gonadal hormones in bird eggs. Across vertebrates, glucocorticoids can suppress reproduction by downregulating gonadal hormones. Using the chicken as a model species, we therefore tested whether elevated levels of plasma corticosterone in female birds influence the production of gonadal steroids by the ovarian follicles and thus the amount of reproductive hormones in the egg yolk. Adult laying hens of two different strains (ISA brown and white Leghorn) were implanted subcutaneously with corticosterone pellets that elevated plasma corticosterone concentrations over a period of nine days. Steroid hormones were subsequently quantified in plasma and yolk. Corticosterone-implanted hens of both strains had lower plasma progesterone and testosterone levels and their yolks contained less progesterone and testosterone. The treatment also reduced egg and yolk mass. Plasma estrogen concentrations decreased in white Leghorns only whereas in both strains yolk estrogens were unaffected. Our results demonstrate for the first time that maternal plasma corticosterone levels influence reproductive hormone concentrations in the yolk. Maternal corticosterone could therefore mediate environmentally induced changes in yolk gonadal hormone concentrations. In addition, stressful situations experienced by the bird mother might affect the offspring via reduced amounts of reproductive hormones present in the egg as well as available nutrients for the embryo

    Heritable variation in maternally derived yolk androgens, thyroid hormones and immune factors

    Get PDF
    Maternal reproductive investment can critically influence offspring phenotype, and thus these maternal effects are expected to be under strong natural selection. Knowledge on the extent of heritable variation in the physiological mechanisms underlying maternal effects is however limited. In birds, resource allocation to eggs is a key mechanism for mothers to affect their offspring and different components of the egg may or may not be independently adjusted. We studied the heritability of egg components and their genetic and phenotypic covariation in great tits (Parus major), using captive-bred full siblings of wild origin. Egg mass, testosterone (T) and androstenedione (A4) hormone concentrations showed moderate heritability, in agreement with earlier findings. Interestingly, yolk triiodothyronine hormone (T3), but not its precursor, thyroxine hormone (T4), concentration was heritable. An immune factor, albumen lysozyme, showed moderate heritability, but yolk immunoglobulins (IgY) did not. The genetic correlation estimates were moderate but statistically nonsignificant; a trend for a positive genetic correlation was found between A4 and egg mass, T and lysozyme and IgY and lysozyme, respectively. Interestingly, phenotypic correlations were found only between A4 and T, and T4 and T3, respectively. Given that these egg components are associated with fitness-related traits in the offspring (and mother), and that we show that some components are heritable, it opens the possibility that natural selection may shape the rate and direction of phenotypic change via egg composition
    corecore