27 research outputs found

    Measuring disturbance at a swift breeding colonies due to the visual aspects of a drone: a quasi-experiment study

    Get PDF
    There is a growing body of research indicating that drones can disturb animals. However, it is usually unclear whether the disturbance is due to visual or auditory cues. Here, we examined the effect of drone flights on the behaviour of great dusky swifts Cypseloides senex and white-collared swifts Streptoprocne zonaris in two breeding sites where drone noise was obscured by environmental noise from waterfalls and any disturbance must be largely visual. We performed 12 experimental flights with a multirotor drone at different vertical, horizontal and diagonal distances from the colonies. From all flights, 17% caused  50 m and that recreational flights should be discouraged or conducted at larger distances (e.g. 100 m) in nesting birds areas such as waterfalls, canyons and caves

    Noninvasive Technologies for Primate Conservation in the 21st Century

    Get PDF
    Observing and quantifying primate behavior in the wild is challenging. Human presence affects primate behavior and habituation of new, especially terrestrial, individuals is a time-intensive process that carries with it ethical and health concerns, especially during the recent pandemic when primates are at even greater risk than usual. As a result, wildlife researchers, including primatologists, have increasingly turned to new technologies to answer questions and provide important data related to primate conservation. Tools and methods should be chosen carefully to maximize and improve the data that will be used to answer the research questions. We review here the role of four indirect methods—camera traps, acoustic monitoring, drones, and portable field labs—and improvements in machine learning that offer rapid, reliable means of combing through large datasets that these methods generate. We describe key applications and limitations of each tool in primate conservation, and where we anticipate primate conservation technology moving forward in the coming years

    Terrestrial Megafauna Response to Drone Noise Levels in Ex Situ Areas

    Get PDF
    Drone use has significantly grown in recent years, and there is a knowledge gap on how the noise produced by these systems may affect animals. We investigated how 18 species of megafauna reacted to drone sound pressure levels at different frequencies. The sound pressure level on the low frequency generated by the drone did not change the studied species’ behavior, except for the Asian elephant. All other studied species showed higher noise sensitivity at medium and high frequencies. The Asian elephant was the most sensitive species to drone noise, mainly at low frequencies. Felines supported the highest sound pressure level before showing behavioral reactions. Our results suggest that drone sound pressure levels in different frequencies cause behavioral changes that differ among species, which is relevant to assessing drone disturbances in ex situ environments. The findings presented here can help to reduce drone impact for target species and serve as an experimental study for future drone use guidelines

    A practical approach with drones, smartphones, and tracking tags for potential real-time animal tracking

    Get PDF
    Drones are increasingly used for fauna monitoring and wildlife tracking; however, their application for wildlife tracking is restricted by developing such systems. Here we explore the potential of drones for wildlife tracking using an off-the-shelf system that is easy to use by non-specialists consisting of a multirotor drone, smartphones, and commercial tracking devices via Bluetooth and Ultra-Wide Band (UWB). We present the system configuration, explore the operational parameters that can affect detection capabilities, and test the effectiveness of the system for locating targets by simulating target animals in savanna and forest environments. The self-contained tracking system was built without hardware or software customization. In 40 tracking flights carried out in the Brazilian Cerrado, we obtained a detection rate of 90% in savanna and 40% in forest areas. Tests for targets in movement (N = 20), the detection rates were 90% in the savanna and 30% in the forest areas. The spatial accuracy obtained by the system was 14.61 m, being significantly more accurate in savanna (⁠x¯ = 10.53) than in forest areas (⁠x¯ = 13.06). This approach to wildlife tracking facilitates the use of drones by non-specialists at an affordable cost for conservation projects with limited resources. The reduced size of the tags, the long battery life, and the lower cost compared to GPS-tags open up a range of opportunities for animal tracking

    Steps to build a DIY low-cost fixed-wing drone for biodiversity conservation

    Get PDF
    Despite the proved usefulness of drones in biodiversity studies, acquisition costs and difficulties in operating, maintaining and repairing these systems constrain their integration in conservation projects, particularly for low-income countries. Here we present the steps necessary to build a low-cost fixed-wing drone for environmental applications in large areas, along with instructions to increase the reliability of the system and testing its performance. Inspired by DIY (Do It Yourself) and open source models, this work prioritizes simplicity and accounts for cost-benefit for the researcher. The DIY fixed-wing drone developed has electric propulsion, can perform pre-programmed flight, can carry up to 500 g payload capacity with 65 minutes flight duration and flies at a maximum distance of 20 km. It is equipped with a RGB (Red, Green and Blue) sensor capable of obtaining 2.8 cm per pixel Ground Sample Distance (GSD) resolution at a constant altitude of 100 m above ground level (AGL). The total cost was $995 which is substantially less than the average value of similar commercial drones used in biodiversity studies. We performed 12 flight tests in auto mode using the developed model in protected areas in Brazil, obtaining RGB images that allowed us to identify deforestation spots smaller than 5 m2 and medium-sized animals. Building DIY drones requires some technical knowledge and demands more time than buying a commercial ready-to-fly system, but as proved here, it can be less expensive, which is often crucial in conservation projects

    Thermal-Drones as a Safe and Reliable Method for Detecting Subterranean Peat Fires

    Get PDF
    Underground peat fires are a major hazard to health and livelihoods in Indonesia, and are a major contributor to carbon emissions globally. Being subterranean, these fires can be difficult to detect and track, especially during periods of thick haze and in areas with limited accessibility. Thermal infrared detectors mounted on drones present a potential solution to detecting and managing underground fires, as they allow large areas to be surveyed quickly from above and can detect the heat transferred to the surface above a fire. We present a pilot study in which we show that underground peat fires can indeed be detected in this way. We also show that a simple temperature thresholding algorithm can be used to automatically detect them. We investigate how different thermal cameras and drone flying strategies may be used to reliably detect underground fires and survey fire-prone areas. We conclude that thermal equipped drones are potentially a very powerful tool for surveying for fires and firefighting. However, more investigation is still needed into their use in real-life fire detection and firefighting scenarios

    Exploring the opportunities and risks of aerial monitoring for biodiversity conservation

    Get PDF
    Drones are unoccupied aerial systems (UAS) whose technology has evolved rapidly over the past 15 years. Increasingly used in conservation to manage and monitor biodiversity, drones offer rich capabilities to observe in difficult terrain, have relatively affordable hardware costs and are likely to continue to proliferate rapidly in the years ahead. Drones are useful for tasks as diverse as monitoring wildlife poaching and illegal timber extraction, managing ecotourism and disaster responses, and tracking the regeneration or degradation of forests, and offer potential for more specialised tasks as their sensory payloads are developed. However, although associated technical issues and applications have been explored in wide-ranging ways within conservation science, there has been relatively little social-scientific engagement with drones to date. This leaves a gap surrounding the potential social benefits and risks of drones, as well as in interdisciplinary conversations. This introduction is the first of four papers under the heading ‘Drone ecologies’, building on an interdisciplinary workshop held under the same name at the University of Bristol in July 2021. Expanding from the plenary dialogues that opened this workshop, this introduction explores what interdisciplinary perspectives on drones can offer in addressing global social and ecological challenges, drawing on expertise from the fields of conservation biology, human and physical geography, rainforest ecology and environmental systems. Setting out the aims of the overall special collection, we review here the ways that drones are being used, and might be used, in biodiversity conservation, setting out important considerations to minimise risks of inadvertent harms

    Noninvasive Technologies for Primate Conservation in the 21st Century

    Get PDF
    Observing and quantifying primate behavior in the wild is challenging. Human presence affects primate behavior and habituation of new, especially terrestrial, individuals is a time-intensive process that carries with it ethical and health concerns, especially during the recent pandemic when primates are at even greater risk than usual. As a result, wildlife researchers, including primatologists, have increasingly turned to new technologies to answer questions and provide important data related to primate conservation. Tools and methods should be chosen carefully to maximize and improve the data that will be used to answer the research questions. We review here the role of four indirect methods—camera traps, acoustic monitoring, drones, and portable field labs—and improvements in machine learning that offer rapid, reliable means of combing through large datasets that these methods generate. We describe key applications and limitations of each tool in primate conservation, and where we anticipate primate conservation technology moving forward in the coming years

    Unmanned aircraft systems as a new source of disturbance for wildlife: A systematic review.

    Get PDF
    The use of small Unmanned Aircraft Systems (UAS; also known as "drones") for professional and personal-leisure use is increasing enormously. UAS operate at low altitudes (<500 m) and in any terrain, thus they are susceptible to interact with local fauna, generating a new type of anthropogenic disturbance that has not been systematically evaluated. To address this gap, we performed a review of the existent literature about animals' responses to UAS flights and conducted a pooled analysis of the data to determine the probability and intensity of the disturbance, and to identify the factors influencing animals' reactions towards the small aircraft. We found that wildlife reactions depended on both the UAS attributes (flight pattern, engine type and size of aircraft) and the characteristics of animals themselves (type of animal, life-history stage and level of aggregation). Target-oriented flight patterns, larger UAS sizes, and fuel-powered (noisier) engines evoked the strongest reactions in wildlife. Animals during the non-breeding period and in large groups were more likely to show behavioral reactions to UAS, and birds are more prone to react than other taxa. We discuss the implications of these results in the context of wildlife disturbance and suggest guidelines for conservationists, users and manufacturers to minimize the impact of UAS. In addition, we propose that the legal framework needs to be adapted so that appropriate actions can be undertaken when wildlife is negatively affected by these emergent practices
    corecore