207 research outputs found

    The Impact of Trauma-Informed Training, Self-Efficacy, and Work Task Motivation on Meaningful Work for K-12 Public Education Teachers

    Get PDF
    Over the past decade, schools have increasingly adopted trauma-informed practices (TIP) due to research confirming the negative impact of adverse childhood experiences (ACEs) and trauma on children and youth. This study explored how trauma-informed training affects teachers’ experiences of meaningful work. The study is based on the theoretical frameworks of Deci and Ryan’s self-determination theory (SDT) and Bandura’s self-efficacy theory, as well as Rosso et al.’s (2010) research on meaningful work. The research used a quasi-experimental, nonequivalent group posttest-only design to measure the impact of trauma-informed training on teachers’ sense of meaningful work. Additionally, this study examined the relationship between teachers’ self-efficacy and work motivation for meaningful work. The study used three instruments to survey teachers: the Teacher’s Sense of Self-Efficacy Scale (TSES), the Work Tasks and Motivation Scale for Teachers (WTMST), and the Work and Meaning Inventory (WAMI)

    Modularity of Convergence and Strong Convergence in Infinitary Rewriting

    Full text link
    Properties of Term Rewriting Systems are called modular iff they are preserved under (and reflected by) disjoint union, i.e. when combining two Term Rewriting Systems with disjoint signatures. Convergence is the property of Infinitary Term Rewriting Systems that all reduction sequences converge to a limit. Strong Convergence requires in addition that redex positions in a reduction sequence move arbitrarily deep. In this paper it is shown that both Convergence and Strong Convergence are modular properties of non-collapsing Infinitary Term Rewriting Systems, provided (for convergence) that the term metrics are granular. This generalises known modularity results beyond metric \infty

    On the Disentanglement of Tube Inequalities in Concentric Tube Continuum Robots

    Full text link
    Concentric tube continuum robots utilize nested tubes, which are subject to a set of inequalities. Current approaches to account for inequalities rely on branching methods such as if-else statements. It can introduce discontinuities, may result in a complicated decision tree, has a high wall-clock time, and cannot be vectorized. This affects the behavior and result of downstream methods in control, learning, workspace estimation, and path planning, among others. In this paper, we investigate a mapping to mitigate branching methods. We derive a lower triangular transformation matrix to disentangle the inequalities and provide proof for the unique existence. It transforms the interdependent inequalities into independent box constraints. Further investigations are made for sampling, control, and workspace estimation. Approaches utilizing the proposed mapping are at least 14 times faster (up to 176 times faster), generate always valid joint configurations, are more interpretable, and are easier to extend.Comment: Accepted for publication in International Conference on Robotics and Automation (ICRA 2024). 7 pages, 5 figure

    A Universal Machine for Biform Theory Graphs

    Full text link
    Broadly speaking, there are two kinds of semantics-aware assistant systems for mathematics: proof assistants express the semantic in logic and emphasize deduction, and computer algebra systems express the semantics in programming languages and emphasize computation. Combining the complementary strengths of both approaches while mending their complementary weaknesses has been an important goal of the mechanized mathematics community for some time. We pick up on the idea of biform theories and interpret it in the MMTt/OMDoc framework which introduced the foundations-as-theories approach, and can thus represent both logics and programming languages as theories. This yields a formal, modular framework of biform theory graphs which mixes specifications and implementations sharing the module system and typing information. We present automated knowledge management work flows that interface to existing specification/programming tools and enable an OpenMath Machine, that operationalizes biform theories, evaluating expressions by exhaustively applying the implementations of the respective operators. We evaluate the new biform framework by adding implementations to the OpenMath standard content dictionaries.Comment: Conferences on Intelligent Computer Mathematics, CICM 2013 The final publication is available at http://link.springer.com

    Sparsity and cosparsity for audio declipping: a flexible non-convex approach

    Get PDF
    This work investigates the empirical performance of the sparse synthesis versus sparse analysis regularization for the ill-posed inverse problem of audio declipping. We develop a versatile non-convex heuristics which can be readily used with both data models. Based on this algorithm, we report that, in most cases, the two models perform almost similarly in terms of signal enhancement. However, the analysis version is shown to be amenable for real time audio processing, when certain analysis operators are considered. Both versions outperform state-of-the-art methods in the field, especially for the severely saturated signals

    Принцип диалогичности извлечения экспертных знаний при оценке инноваций

    Get PDF
    В статье предлагается использовать принцип диалогичности при прогнозе эффективности инновационных продуктов на основе экспертных данных. Извлечение знаний экспертов в процессе диалога осуществляется с учетом их общественной роли и психофизиологических возможностей с пользованием компьютерных систем поддержки решений

    Soft Robotics. Bio-inspired Antagonistic Stiffening

    Get PDF
    Soft robotic structures might play a major role in the 4th industrial revolution. Researchers have demonstrated advantages of soft robotics over traditional robots made of rigid links and joints in several application areas including manufacturing, healthcare, and surgical interventions. However, soft robots have limited ability to exert larger forces and change their stiffness on demand over a wide range. Stiffness can be achieved as a result of the equilibrium of an active and a passive reaction force or of two active forces antagonistically collaborating. This paper presents a novel design paradigm for a fabric-based Variable Stiffness System including potential applications

    Open continuum robotics–one actuation module to create them all

    Get PDF
    Experiments on physical continuum robot are the gold standard for evaluations. Currently, as no commercial continuum robot platform is available, a large variety of early-stage prototypes exists. These prototypes are developed by individual research groups and are often used for a single publication. Thus, a significant amount of time is devoted to creating proprietary hardware and software hindering the development of a common platform, and shifting away scarce time and efforts from the main research challenges. We address this problem by proposing an open-source actuation module, which can be used to build different types of continuum robots. It consists of a high-torque brushless electric motor, a high resolution optical encoder, and a low-gear-ratio transmission. For this article, we create three different types of continuum robots. In addition, we illustrate, for the first time, that continuum robots built with our actuation module can proprioceptively detect external forces. Consequently, our approach opens untapped and under-investigated research directions related to the dynamics and advanced control of continuum robots, where sensing the generalized flow and effort is mandatory. Besides that, we democratize continuum robots research by providing open-source software and hardware with our initiative called the Open Continuum Robotics Project, to increase the accessibility and reproducibility of advanced methods

    Hall Effect of Spin Waves in Frustrated Magnets

    Get PDF
    We examine a possible spin Hall effect for localized spin systems with no charge degrees of freedom. In this scenario, a longitudinal magnetic field gradient induces a transverse spin current carried by spin wave excitations with an anomalous velocity which is associated with the Berry curvature raised by spin chirality, in analogy with anomalous Hall effects in itinerant electron systems. Our argument is based on a semiclassical equations of motion applicable to general spin systems. Also, a microscopic model of frustrated magnets which exhibits the anamalous spin Hall effect is presented.Comment: 5 pages, title and presentation style are changed, accepted for publication in Phys. Rev. Let
    corecore