111 research outputs found
Solvent–surface interactions between nanodiamond and ethanol studied with in situ infrared spectroscopy
In situ Attenuated Total reflectance infrared (ATR IR) spectroscopy is used to study the interaction between ethanol vapour and oxidised nanodiamond (ND) surfaces. On initial exposure an amorphous multilayer of adsorbed ethanol is observed, but over ca. 30 min a loss in intensity of ν(OH) and δ(OH) bands indicates a preferential binding of the ethanol –OH with the ND surface. Other spectral changes indicate ordering of the ethanol molecules on the surface and their confinement within the pores of the ND structure in specific conformations. Changes in the IR spectrum also suggest that vibrational frequencies of carbonyl groups on the ND surface are affected by the adsorption of ethanol and that surface-bound water is either displaced or involved in hydrogen-bonding with ethanol
Hubungan Karakteristik Penyuluh Pertanian Pns terhadap Keberhasilan Penyuluhan (Kasus: Kecamatan Sunggal dan Kutalimbaru Kabupaten Deli Serdang)
Tujuan penelitian ini adalah untuk mengetahuipelaksanaan program penyuluhan di daerah penelitian, untuk menganalisis perkembangan program penyuluhan di daerah penelitian, untuk menganalisis hubungan karakteristik penyuluh terhadapkeberhasilan penyuluhan pertanian di daerah penelitian. Daerah penelitian ditentukan secara sengaja (purposive), yakni di Kecamatan Sunggal dan Kutalimbaru Kabupaten Deli Serdang, dengan pertimbangan bahwa daerah tersebut terdapat penyuluh teladan seSumatera Utara. Metode penentuan objek penelitiandigunakan metode purposive samplingdengan metode sensusyaitu sebanyak 17 orang penyuluh PNS dan 17 orang kelompok petani.Metode analisis yang digunakan adalah metode pemberian skor dan metode analisis korelasi Spearman.Hasil penelitian menunjukkan:pelaksanaan program penyuluhan mencapai keberhasilan yangtergolong tinggi. Ada peningkatan program selama tiga tahun terakhir. Bahwa ada hubungan karakteristik umur penyuluh PNS dengan keberhasilan penyuluhan tetapi karakteristik pendidikan, lama bekerja, jumlah tanggungan,jarak bertugas, tingkat pendapatan penyuluh tidak memiliki hubungan dengan keberhasilan penyuluhan
QUARE: 1st Workshop on Measuring the Quality of Explanations in Recommender Systems
QUARE - measuring the QUality of explAnations in REcommender systems - is the first workshop that aims to promote discussion upon future research and practice directions around evaluation methodologies for explanations in recommender systems. To that end, we bring together researchers and practitioners from academia and industry to facilitate discussions about the main issues and best practices in the respective areas, identify possible synergies, and outline priorities regarding future research directions. Additionally, we want to stimulate reflections around methods to systematically and holistically assess explanation approaches, impact, and goals, at the interplay between organisational and human values. The homepage of the workshop is available at: https: //sites.google.com/view/quare-2022/
Ductility of wide-beam RC frames as lateral resisting system
[EN] Some Mediterranean seismic codes consider wide-beam reinforced concrete moment resisting frames (WBF) as horizontal load carrying systems that cannot guarantee high ductility performances. Conversely, Eurocode 8 allows High Ductility Class (DCH) design for such structural systems. Code prescriptions related to WBF are systematically investigated. In particular, lesson learnt for previous earthquakes, historical reasons, and experimental and numerical studies underpinning specific prescriptions on wide beams in worldwide seismic codes are discussed. Local and global ductility of WBF are then analytically investigated through (1) a parametric study on chord rotations of wide beams with respect to that of deep beams, and (2) a spectral-based comparison of WBF with conventional reinforced concrete moment resisting frames (i.e. with deep beams). Results show that the set of prescriptions given by modern seismic codes provides sufficient ductility to WBF designed in DCH. In fact, global capacity of WBF relies more on the lateral stiffness of the frames and on the overstrength of columns rather than on the local ductility of wide beams, which is systematically lower with respect to that of deep beams.GĂłmez-MartĂnez, F.; Alonso Durá, A.; De Luca, F.; Verderame, GM. (2016). Ductility of wide-beam RC frames as lateral resisting system. Bulletin of Earthquake Engineering. 14(6):1545-1569. doi:10.1007/s10518-016-9891-xS15451569146ACI (1989) Building code requirements for reinforced concrete (ACI 318-89). ACI Committee 318, American Concrete Institute, Farmington Hills, Michigan, USAACI (2008) Building code requirements for structural concrete (ACI 318-08) and commentary (318-08). ACI Committee 318, American Concrete Institute, Farmington Hills, Michigan, USAACI-ASCE (1991) Recommendations for design of beam-column connections in monolithic reinforced concrete structures (ACI 352R-91). Joint ACI-ASCE Committee 352, American Concrete Institute, Farmington Hills, Michigan, USAACI-ASCE (2002) Recommendations for design of beam-column connections in monolithic reinforced concrete structures (ACI 352R-02). Joint ACI-ASCE Committee 352, American Concrete Institute, Farmington Hills, Michigan, USAArslan MH, Korkmaz HH (2007) What is to be learned from damage and failure of reinforced concrete structures during recent earthquakes in Turkey? Eng Fail Anal 14(1):1–22ASCE (2007) Seismic Rehabilitation of Existing Buildings, ASCE/SEI 41-06. American Society of Civil Engineers, RestonASCE (2010) Minimum Design Loads for Building and Other Structures, ASCE/SEI 7-10. American Society of Civil Engineers, RestonBenavent-Climent A (2007) Seismic behavior of RC side beam-column connections under dynamic loading. J Earthquake Eng 11:493–511Benavent-Climent A, Zahran R (2010) An energy-based procedure for the assessment of seismic capacity of existing frames: application to RC wide beam systems in Spain. Soil Dyn Earthq Eng 30:354–367Benavent-Climent A, CahĂs X, Zahran R (2009) Exterior wide beam-column connections in existing RC frames subjected to lateral earthquake loads. Eng Struct 31:1414–1424Benavent-Climent A, CahĂs X, Vico JM (2010) Interior wide beam-column connections in existing RC frames subjected to lateral earthquake loading. Bull Earthq Eng 8:401–420BHRC (2004) Iranian Code of Practice for Seismic Resistant Design of Buildings. Standard NÂş 2800, 3rd edn. Building and Housing Research Center, TehranBorzi B, Elnashai AS (2000) Refined force reduction factors for seismic design. Eng Struct 22:1244–1260Borzi B, Pinho R, Crowley H (2008) Simplified pushover-based vulnerability analysis for large-scale assessment of RC buildings. Eng Struct 30:804–820BSI (2004) Eurocode 2: Design of concrete structures: Part 1-1: General rules and rules for buildings. British Standards Institutions, LondonCalvi GM (1999) A displacement-based approach for vulnerability evaluation of classes of buildings. J Earthquake Eng 3(3):411–438CDSC (1994) Seismic construction code, NCSR-94. Committee for the Development of Seismic Codes, Spanish Ministry of Construction, Madrid, Spain (in Spanish)CDSC (2002) Seismic construction code, NCSE-02. Committee for the Development of Seismic Codes, Spanish Ministry of Construction, Madrid, Spain (in Spanish)CEN (2004) Eurocode 8: design of structures for earthquake resistance—part 1: general rules, seismic actions and rules for buildings. European Standard EN 1998-1:2003—ComitĂ© EuropĂ©en de Normalisation, Brussels, BelgiumCEN (2005) Eurocode 8: design of structures for earthquake resistance—part 3: assessment and retrofitting of buildings. European Standard EN 1998-1:2005—ComitĂ© EuropĂ©en de Normalisation, Brussels, BelgiumCheung PC, Paulay T, Park R (1991) Mechanisms of slab contributions in beam-column subassemblages. ACI Spec Publ 123Cosenza E, Manfredi G, Polese M, Verderame GM (2005) A multilevel approach to the capacity assessment of existing RC buildings. J Earthquake Eng 9(1):1–22Crowley H, Pinho R (2010) Revisiting Eurocode 8 formulae for periods of vibration and their employment in linear seismic analysis. Earthquake Eng Struct Dynam 39:223–235CS.LL.PP (2009) Instructions for the application of the technique code for the Constructions. Official Gazette of the Italian Republic, 47, Regular Supplement no. 27 (in Italian)De Luca F, Vamvatsikos D, Iervolino I (2013) Near-optimal piecewise linear fits of static pushover capacity curves for equivalent SDOF analysis. Earthquake Eng Struct Dynam 42(4):523–543De Luca F, Verderame GM, GĂłmez-MartĂnez F, PĂ©rez-GarcĂa A (2014) The structural role played by masonry infills on RC building performances after the 2011 Lorca, Spain, earthquake. Bull Earthq Eng 12(5):1999–2026Decanini LD, Mollaioli F (2000) Analisi di vulnerabilitĂ sismica di edifici in cemento armato pre-normativa. In: Cosenza E (ed) Comportamento sismico di edifici in cemento armato progettati per carichi verticali. CNR—Gruppo Nazionale per la Difesa dei Terremoti, Rome (in Italian)Dolšek M, Fajfar P (2004) IN2—a simple alternative for IDA. In: Proceedings of the 13th World conference on Earthquake Engineering. August 1–6, Vancouver, Canada. Paper 3353DomĂnguez D, LĂłpez-Almansa F, Benavent-Climent A (2014) Comportamiento para el terremoto de Lorca de 11-05-2011, de edificios de vigas planas proyectados sin tener en cuenta la acciĂłn sĂsmica. Informes de la ConstrucciĂłn 66(533):e008 (in Spanish)DomĂnguez D, LĂłpez-Almansa F, Benavent-Climent A (2016) Would RC wide-beam buildings in Spain have survived Lorca earthquake (11-05-2011)? Eng Struct 108:134–154Dönmez C (2013) Seismic Performance of Wide-Beam Infill-Joist Block RC Frames in Turkey. J Perform Constr Facil 29(1):04014026Fadwa I, Ali TA, Nazih E, Sara M (2014) Reinforced concrete wide and conventional beam-column connections subjected to lateral load. Eng Struct 76:34–48Fardis MN (2009) Seismic design, assessment and retrofitting of concrete, Buildings edn. Springer, LondonGentry TR, Wight JK (1992) Reinforced concrete wide beam-column connections under earthquake-type loading. Report no. UMCEE 92-12. Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USAGĂłmez-MartĂnez F (2015) FAST simplified vulnerability approach for seismic assessment of infilled RC MRF buildings and its application to the 2011 Lorca (Spain) earthquake. Ph.D. Thesis, Polytechnic University of Valencia, SpainGĂłmez-MartĂnez F, PĂ©rez GarcĂa A, De Luca F, Verderame GM (2015a) Comportamiento de los edificios de HA con tabiquerĂa durante el sismo de Lorca de 2011: aplicaciĂłn del mĂ©todo FAST. Informes de la ConstrucciĂłn 67(537):e065 (in Spanish)GĂłmez-MartĂnez F, PĂ©rez-GarcĂa A, Alonso Durá A, MartĂnez Boquera A, Verderame GM (2015b) Eficacia de la norma NCSE-02 a la luz de los daños e intervenciones tras el sismo de Lorca de 2011. In: Proceedings of Congreso Internacional sobre IntervenciĂłn en Obras ArquitectĂłnicas tras Sismo: L’Aquila (2009), Lorca (2011) y Emilia Romagna (2012), May 13–14, Murcia, Spain (in Spanish)GĂłmez-MartĂnez F, Verderame GM, De Luca F, PĂ©rez-GarcĂa A, Alonso-Durá, A (2015c). High ductility seismic performances of wide-beam RC frames. In; XVI Convegno ANIDIS. September 13–17, L'Aquila, ItalyHawkins NM, Mitchell D (1979) Progressive collapse of flat plate structures. ACI J 76(7):775–808Iervolino I, Manfredi G, Polese M, Verderame GM, Fabbrocino G (2007) Seismic risk of RC building classes. Eng Struct 29(5):813–820Inel M, Ozmen HB, Akyol E (2013) Observations on the building damages after 19 May 2011 Simav (Turkey) earthquake. Bull Earthq Eng 11(1):255–283Kurose Y, Guimaraes GN, Zuhua L, Kreger ME, Jirsa JO (1991) Evaluation of slab-beam-column connections subjected to bidirectional loading. ACI Spec Publ 123:39–67LaFave JM, Wight JK (1997) Behavior of reinforced exterior wide beam-column-slab connections subjected to lateral earthquake loading. Report no. UMCEE 97-01. Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USALaFave JM, Wight JK (1999) Reinforced concrete exterior wide beam-column-slab connections subjected to lateral earthquake loading. ACI Struct J 96(4):577–586LaFave JM, Wight JK (2001) Reinforced concrete wide-beam construction vs. conventional construction: resistance to lateral earthquake loads. Earthq Spectra 17(3):479–505Li B, Kulkarni SA (2010) Seismic behavior of reinforced concrete exterior wide beam-column joints. J Struct Eng (ASCE) 136(1):26–36LĂłpez-Almansa F, DomĂnguez D, Benavent-Climent A (2013) Vulnerability analysis of RC buildings with wide beams located in moderate seismicity regions. Eng Struct 46:687–702Masi A, Santarsiero G, Nigro D (2013a) Cyclic tests on external RC beam-column joints: role of seismic design level and axial load value on the ultimate capacity. J Earthquake Eng 17(1):110–136Masi A, Santarsiero G, Mossucca A, Nigro D (2013b) Seismic behaviour of RC beam-column subassemblages with flat beam. In: Proceedings of XV Convegno della Associazione Nazionale Italiana di Ingegneria Sismica, ANIDIS. Padova, ItalyMazzolani FM, Piluso V (1997) Plastic design of seismic resistant steel frames. Earthquake Eng Struct Dynam 26:167–191MEPP (2000a) Greek earthquake resistant design code, EAK 2000. Ministry of Environment, Planning and Public Works, AthensMEPP (2000b) Greek code for the design and construction of concrete works, EKOS 2000. Ministry of Environment, Planning and Public Works, Athens (in Greek)Miranda E, Bertero VV (1994) Evaluation of strength reduction factors for earthquake-resistant design. Earthq Spectra 10(2):357–379MPWS (2007) Specifications for buildings to be built in seismic areas. Turkish Standards Institution, Ministry of Public Works and Settlement, Ankara (in Turkish)Mwafy AM, Elnashai AS (2002) Calibration of force reduction factors of RC buildings. J Earthquake Eng 6(2):239–273NZS (2004) Structural design actions. Part 5: earthquake actions, NZS 1170.5. New Zealand Standards, WellingtonNZS (2006) Concrete structures standard: part 1—the design of concrete structures, NZS 3101 part 1. New Zealand Standards, WellingtonPan A, Moehle JP (1989) Lateral displacement ductility of reinforced concrete flat plates. ACI Struct J 86(3):250–258Panagiotakos TB, Fardis MN (2001) Deformations of reinforced concrete members at yielding and ultimate. ACI Struct J 98(2):135–148 [and Appendix 1 (69 pp)]Paulay T, Priestley MJN (1992) Seismic design of concrete and masonry structures. Wiley, New York, USAQuintero-Febres CG, Wight JK (1997) Investigation on the seismic behavior of RC interior wide beam-column connections. Report no. UMCEE 97-15. Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USAQuintero-Febres CG, Wight JK (2001) Experimental study of Reinforced concrete interior wide beam-column connections subjected to lateral loading. ACI Struct J 98(4):572–582Serna-Ros P, Fernández-Prada MA, Miguel-Sosa P, Debb OAR (2001) Influence of stirrup distribution and support width on the shear strength of reinforced concrete wide beams. Mag Concr Res 54(00):1–11Shuraim AB (2012) Transverse stirrup configurations in RC wide shallow beams supported on narrow columns. J Struct Eng 138(3):416–424Siah WL, Stehle JS, Mendis P, Goldsworthy H (2003) Interior wide beam connections subjected to lateral earthquake loading. Eng Struct 25:281–291Tore E, Demiral T (2014) A parametric study of code-based performance limits for wide beams. e-GFOS 5(8):1–11Vamvatsikos D, Cornell CA (2002) Incremental Dynamic Analysis. Earthquake Eng Struct Dynam 31:491–514Vidic T, Fajfar P, Fischinger M (1994) Consistent inelastic design spectra: strength and displacement. Earthquake Eng Struct Dynam 23:507–521Vielma JC, Barbat AH, Oller S (2010) Seismic safety of low ductility structures used in Spain. Bull Earthq Eng 8:135–15
3D cable-based parallel robot simulation using PD control
In this paper, we present a simulator that has been developed using PD control to study 3D cable-based parallel robot with four cables. The proposed control technique is widely used for dealing with linear systems uncertainties, in this context; we investigated to use the Runge Kutta method of 4th order for solving non-linear partial differential equations of our system. The main contribution of this work is firstly: modelling of differential equations of our system. Secondly, the PD control applied to the dynamic model for different trajectories in order to test the accurate tracking of the robot to a desired trajectory. The effectiveness of the proposed control strategy is improving the robot performance in terms of tracking a desired path
USEE 2001: Utility Software for Earthquake Engineering Report and User's Manual
National Science Foundation EEC-970178
A new equation for prediction of seismic gap between adjacent buildings located on different soil types
This study aims to investigate the effect of soil type on the minimum separation distance for low and mid-rise reinforced concrete (RC) buildings. 3696 nonlinear time history analyses were carried out using 56 different building pairs located on 3 different soil types and 66 different earthquake records. The minimum required seismic gap distances obtained from the analysis results were compared with the minimum seismic gap estimates of DDC and simplified method in the literature. The required gap distances obtained for different soil types were examined and a new equation for modification coefficient is proposed to improve the simplified method. The outcomes show that the proposed new equation provides the required seismic gap distance values for all soil types better than the Double Difference Combination (known as DDC) method estimates. © 2022 Elsevier Lt
Turkey
This study aims to evaluate seismic performance of existing low and mid-rise reinforced concrete buildings by comparing their displacement capacities and displacement demands under selected ground motions experienced in Turkey as well as demand spectrum provided in 2007 Turkish Earthquake Code for design earthquake with 10% probability of exceedance in 50 years for soil class Z3. It should be noted that typical residential buildings are designed according to demand spectrum of 10% probability of exceedance in 50 years. Three RC building sets as 2-, 4- and 7-story, are selected to represent reference low-and mid-rise buildings located in the high seismicity region of Turkey. The selected buildings are typical beam-column RC frame buildings with no shear walls. The outcomes of detailed field and archive investigation including approximately 500 real residential RC buildings established building models to reflect existing building stock. Total of 72 3-D building models are constructed from the reference buildings to include the effects of some properties such as structural irregularities, concrete strength, seismic codes, structural deficiencies, transverse reinforcement detailing, and number of story on seismic performance of low and mid-rise RC buildings. Capacity curves of building sets are obtained by nonlinear static analyses conducted in two principal directions, resulting in 144 models. The inelastic dynamic characteristics are represented by "equivalent" Single-Degree-of-Freedom (ESDOF) systems using obtained capacity curves of buildings. Nonlinear time history analysis is used to estimate displacement demands of representative building models idealized with (ESDOF) systems subjected to the selected ground motion records from past earthquakes in Turkey. The results show that the significant number of pre-modern code 4- and 7-story buildings exceeds LS performance level while the modern code 4- and 7-story buildings have better performances. The findings obviously indicate the existence of destructive earthquakes especially for 4- and 7-story buildings. Significant improvements in the performance of the buildings per modern code are also obvious in the study. Almost one third of pre-modern code buildings is exceeding LS level during records in the past earthquakes. This observation also supports the building damages experienced in the past earthquake events in Turkey
- …