161 research outputs found

    An annual assessment of air quality with the CALIOPE modeling system over Spain

    Get PDF
    The CALIOPE project, funded by the Spanish Ministry of the Environment, aims at establishing an air quality forecasting system for Spain. With this goal, CALIOPE modeling system was developed and applied with high resolution (4 km × 4 km, 1 h) using the HERMES emission model (including emissions of resuspended particles from paved roads) specifically built up for Spain. The present study provides an evaluation and the assessment of the modeling system, coupling WRF-ARW/HERMES/CMAQ/BSC-DREAM8b for a full-year simulation in 2004 over Spain. The evaluation focuses on the capability of the model to reproduce the temporal and spatial distribution of gas phase species (NO2, O3, and SO2) and particulate matter (PM10) against ground-based measurements from the Spanish air quality monitoring network. The evaluation of the modeling results on an hourly basis shows a strong dependency of the performance of the model on the type of environment (urban, suburban and rural) and the dominant emission sources (traffic, industrial, and background). The O3 chemistry is best represented in summer, when mean hourly variability and high peaks are generally well reproduced. The mean normalized error and bias meet the recommendations proposed by the United States Environmental Protection Agency (US-EPA) and the European regulations. Modeled O3 shows higher performance for urban than for rural stations, especially at traffic stations in large cities, since stations influenced by traffic emissions (i.e., high-NOx environments) are better characterized with a more pronounced daily variability. NOx/O3 chemistry is better represented under non-limited-NO2 regimes. SO2 is mainly produced from isolated point sources (power generation and transformation industries) which generate large plumes of high SO2 concentration affecting the air quality on a local to national scale where the meteorological pattern is crucial. The contribution of mineral dust from the Sahara desert through the BSC-DREAM8b model helps to satisfactorily reproduce episodic high PM10 concentration peaks at background stations. The model assessment indicates that one of the main air quality-related problems in Spain is the high level of O3. A quarter of the Iberian Peninsula shows more than 30 days exceeding the value 120 μg m−3 for the maximum 8-h O3 concentration as a consequence of the transport of O3 precursors downwind to/from the Madrid and Barcelona metropolitan areas, and industrial areas and cities in the Mediterranean coast

    Assessment of Kalman filter bias-adjustment technique to improve the simulation of ground-level ozone over Spain

    Get PDF
    The CALIOPE air quality modelling system has been used to diagnose ground level O3 concentration for the year 2004, over the Iberian Peninsula. We investigate the improvement in the simulation of daily O3 maximum by the use of a post-processing such as the Kalman filter bias-adjustment technique. The Kalman filter bias-adjustment technique is a recursive algorithm to optimally estimate bias-adjustment terms from previous measurements and model results. The bias-adjustment technique improved the simulation of daily O3 maximum for the entire year and the all the stations considered over the whole domain. The corrected simulation presents improvements in statistical indicators such as correlation, root mean square error, mean bias, and gross error. After the post-processing the exceedances of O3 concentration limits, as established by the European Directive 2008/50/CE, are better reproduced and the uncertainty of the modelling system, as established by the European Directive 2008/50/CE, is reduced from 20% to 7.5%. Such uncertainty in the model results is under the established EU limit of the 50%. Significant improvements in the O3 timing and amplitude of the daily cycle are also observed after the post-processing. The systematic improvements in the O3 maximum simulations suggest that the Kalman filter post-processing method is a suitable technique to reproduce accurate estimate of ground-level O3 concentration. With this study we evince that the adjusted O3 concentrations obtained after the post-process of the results from the CALIOPE system are a reliable means for real near time O3 forecasts

    Epichloid endophytes confer resistance to the smut Ustilago bullata in the wild grass Bromus auleticus (Trin.)

    Get PDF
    In this work it was studied for the first time whether asexual Epichloe ( Neotyphodium ) endophytes of Bromus auleticus , protect their host plants against the pathogenic fungus Ustilago bullata. Seeds of two different ecotypes of B. auleticus , one of them infected with the endophyte Neotyphodium pampeanum (NpE+) and the other infected with the endophyte Neotyphodium tembladerae (NtE+) and their respectively endophyte-free (NpE−/NtE−) counterparts were used. Seeds of each ecotype and endophytic status were superficially disinfected and were randomly assigned to different treatments named: S+ (smut fungus inoculated) and S− (mock-inoculated). It was evaluated the effect of U. bullata infection on plant characteristics in every stage of their life cycle: seedling emergence, vegetative growth, mortality and smut symptoms in the florets. In NtE+ infected plants, smut disease was almost completely suppressed, whereas in their endophyte-free counterparts (NpE−) the incidence of smut symptoms reached 64%. In NpE+ infected plants smut incidence was significantly lower (7%) than in endophyte-free plants (39%). Although U. bullata infection decreased the emergence rate of both endophyte-infected and endophyte-free plants, neutral or protective effects of the endophytes were observed in seedling development and survival. The survival during the first year of NtE+ plants was higher than in their NtE− counterparts. These results indicate a strong beneficial effect of vertically transmitted endophytes against this pathogen.Facultad de Ciencias Agrarias y Forestale

    Evaluating the CALIOPE air quality modelling system: dynamics and chemistry over Europe and Iberian Peninsula for 2004 at high horizontal resolution

    Get PDF
    The present contribution describes a thorough quantitative evaluation study performed for a reference year (2004). The CALIOPE modelling system is configured with 38 vertical layers reaching up to 50 hPa for the meteorological core. Atmospheric initial and boundary conditions are obtained from the NCEP final analysis data. The vertical resolution of the CMAQ chemistry-transport model for gas-phase and aerosols has been increased from 8 to 15 layers in order to simulate vertical exchanges more accurately. Gas phase boundary conditions are provided by the LMDz-INCA2 global climate-chemistry model (see Hauglustaine et al., 2004). The DREAM model simulates long-range transport of mineral dust over the domains under study. For the European simulation, emissions are disaggregated from the EMEP expert emission inventory for 2004 to the utilized resolution using the criteria implemented in the HERMES emission model (Baldasano et al., 2008b). The HERMES model system, using a bottom-up approach, was adopted to estimate emissions for the Iberian Peninsula simulation at 4 km horizontal resolution, every hour. In order to evaluate the performances of the CALIOPE system, model simulations were compared with ground-based measurements from the EMEP and Spanish air quality networks. For the European domain, 45 stations have been used to evaluate NO2, 60 for O3, 39 for SO2, 25 for PM10 and 16 for PM2.5. On the other hand, the Iberian Peninsula domain has been evaluated against 75 NO2 stations, 84 O3 stations, 69 for SO2, and 46 for PM10. Such large number of observations allows us to provide a detailed discussion of the model skills over quite different geographical locations and meteorological situations.Peer ReviewedPostprint (published version

    Quasi-LDU factorization of nonsingular totally nonpositive matrices

    Full text link
    Let A = (a(ij)) is an element of R-nxn be a nonsingular totally nonpositive matrix. In this paper we describe some properties of these matrices when a(11) = 0 and obtain a characterization in terms of the quasi-LDU factorization of A, where L is a block lower triangular matrix, D is a diagonal matrix and U is a unit upper triangular matrix. (c) 2012 Elsevier Inc. All rights reserved.The authors are very grateful to the referees for their helpful suggestions. This research was supported by the Spanish DGI Grant MTM2010-18228 and the Programa de Apoyo a la Investigacion y Desarrollo (PAID-06-10) of the Universitat Politecnica de Valencia.Cantó Colomina, R.; Ricarte Benedito, B.; Urbano Salvador, AM. (2013). Quasi-LDU factorization of nonsingular totally nonpositive matrices. Linear Algebra and its Applications. 439(4):836-851. https://doi.org/10.1016/j.laa.2012.06.010S836851439

    Early treatment with JNJ-46356479, a mGluR2 modulator, improves behavioral and neuropathological deficits in a postnatal ketamine mouse model of schizophrenia.

    Full text link
    Positive allosteric modulators of the metabotropic glutamate receptor 2 (mGluR2), such as JNJ-46356479 (JNJ), may mitigate the glutamate storm during the early stages of schizophrenia (SZ), which could be especially useful in the treatment of cognitive and negative symptoms. We evaluated the efficacy of early treatment with JNJ or clozapine (CLZ) in reversing behavioral and neuropathological deficits induced in a postnatal ketamine (KET) mouse model of SZ. Mice exposed to KET (30 mg/kg) on postnatal days (PND) 7, 9, and 11 received JNJ or CLZ (10 mg/kg) daily in the adolescent period (PND 35-60). Mice exposed to KET did not show the expected preference for a novel object or for social novelty, but they recovered this preference with JNJ treatment. Similarly, KET group did not show the expected dishabituation in the fifth trial, but mice treated with JNJ or CLZ recovered an interest in the novel animal. Neuronal immunoreactivity also differed between treatment groups with mice exposed to KET showing a reduction in parvalbumin positive cells in the prefrontal cortex and decreased c-Fos expression in the hippocampus, which was normalized with the pharmacological treatment. JNJ-46356479 treatment in early stages may help improve the cognitive and negative symptoms, as well as certain neuropathological deficits, and may even obtain a better response than CLZ treatment. This may have relevant clinical translational applications since early treatment with mGluR2 modulators that inhibit glutamate release at the onset of critical phases of SZ may prevent or slow down the clinical deterioration of the disease

    In situ aerosol-size distributions and clear-column radiative closure during ACE-2

    Get PDF
    As part of the second Aerosol Characterization Experiment (ACE-2) during June and July of 1997, aerosol-size distributions were measured on board the CIRPAS Pelican aircraft through the use of a DMA and 2 OPCs. During the campaign, the boundary-layer aerosol typically possessed characteristics representative of a background marine aerosol or a continentally influenced aerosol, while the free-tropospheric aerosol was characterized by the presence or absence of a Saharan dust layer. A range of radiative closure comparisons were made using the data obtained during vertical profiles flown on 4 missions. Of particular interest here are the comparisons made between the optical properties as determined through the use of measured aerosol-size distributions and those measured directly by an airborne 14-wavelength sunphotometer and 3 nephelometers. Variations in the relative humidity associated with each of the direct measurements required consideration of the hygroscopic properties of the aerosol for size-distribution-based calculations. Simultaneous comparison with such a wide range of directly-measured optical parameters not only offers evidence of the validity of the physicochemical description of the aerosol when closure is achieved, but also provides insight into potential sources of error when some or all of the comparisons result in disagreement. Agreement between the derived and directly-measured optical properties varied for different measurements and for different cases. Averaged over the 4 case studies, the derived extinction coefficient at 525 nm exceeded that measured by the sunphotometer by 2.5% in the clean boundary layer, but underestimated measurements by 13% during pollution events. For measurements within the free troposphere, the mean derived extinction coefficient was 3.3% and 17% less than that measured by the sunphotometer during dusty and non-dusty conditions, respectively. Likewise, averaged discrepancies between the derived and measured scattering coefficient were −9.6%, +4.7%, +17%, and −41% for measurements within the clean boundary layer, polluted boundary layer, free troposphere with a dust layer, and free troposphere without a dust layer, respectively. Each of these quantities, as well as the majority of the >100 individual comparisons from which they were averaged, were within estimated uncertainties

    Clear-sky closure studies of lower tropospheric aerosol and water vapor during ACE-2 using airborne sunphotometer, airborne in-situ, space-borne, and ground-based measurements

    Get PDF
    We report on clear-sky column closure experiments (CLEARCOLUMN) performed in the Canary Islands during the second Aerosol Characterization Experiment (ACE-2) in June/July 1997. We present CLEARCOLUMN results obtained by combining airborne sunphotometer and in-situ (optical particle counter, nephelometer, and absorption photometer) measurements taken aboard the Pelican aircraft, space-borne NOAA/AVHRR data and ground-based lidar and sunphotometer measurements. During both days discussed here, vertical profiles flown in cloud-free air masses revealed 3 distinctly different layers: a marine boundary layer (MBL) with varying pollution levels, an elevated dust layer, and a very clean layer between the MBL and the dust layer. A key result of this study is the achievement of closure between extinction or layer aerosol optical depth (AOD) computed from continuous in-situ aerosol size-distributions and composition and those measured with the airborne sunphotometer. In the dust, the agreement in layer AOD (λ=380–1060 nm) is 3–8%. In the MBL there is a tendency for the in-situ results to be slightly lower than the sunphotometer measurements (10–17% at λ=525 nm), but these differences are within the combined error bars of the measurements and computations
    • …
    corecore