408 research outputs found
Therapy: Metformin takes a new route to clinical efficacy.
International audienceMetformin is currently the first-line treatment option for patients with type 2 diabetes mellitus, yet its mechanism of action remains uncertain. A new study reveals the important role for the activation of a duodenal AMPK-dependent neuronal pathway in the acute antihyperglycaemic effect of metformin and the inhibition of hepatic glucose production
Recommended from our members
The stress polarity signaling (SPS) pathway serves as a marker and a target in the leaky gut barrier: implications in aging and cancer.
The gut barrier separates trillions of microbes from the largest immune system in the body; when compromised, a "leaky" gut barrier fuels systemic inflammation, which hastens the progression of chronic diseases. Strategies to detect and repair the leaky gut barrier remain urgent and unmet needs. Recently, a stress-polarity signaling (SPS) pathway has been described in which the metabolic sensor, AMP-kinase acts via its effector, GIV (also known as Girdin) to augment epithelial polarity exclusively under energetic stress and suppresses tumor formation. Using murine and human colon-derived organoids, and enteroid-derived monolayers (EDMs) that are exposed to stressors, we reveal that the SPS-pathway is active in the intestinal epithelium and requires a catalytically active AMP-kinase. Its pharmacologic augmentation resists stress-induced collapse of the epithelium when challenged with microbes or microbial products. In addition, the SPS-pathway is suppressed in the aging gut, and its reactivation in enteroid-derived monolayers reverses aging-associated inflammation and loss of barrier function. It is also silenced during progression of colorectal cancers. These findings reveal the importance of the SPS-pathway in the gut and highlights its therapeutic potential for treating gut barrier dysfunction in aging, cancer, and dysbiosis
Adenosine-mono-phosphate-activated protein kinase-independent effects of metformin in T cells
The anti-diabetic drug metformin regulates T-cell responses to immune activation and is proposed to function by regulating the energy-stress-sensing adenosine-monophosphate-activated protein kinase (AMPK). However, the molecular details of how metformin controls T cell immune responses have not been studied nor is there any direct evidence that metformin acts on T cells via AMPK. Here, we report that metformin regulates cell growth and proliferation of antigen-activated T cells by modulating the metabolic reprogramming that is required for effector T cell differentiation. Metformin thus inhibits the mammalian target of rapamycin complex I signalling pathway and prevents the expression of the transcription factors c-Myc and hypoxia-inducible factor 1 alpha. However, the inhibitory effects of metformin on T cells did not depend on the expression of AMPK in T cells. Accordingly, experiments with metformin inform about the importance of metabolic reprogramming for T cell immune responses but do not inform about the importance of AMPK
AMPK activation by oncogenesis is required to maintain cancer cell proliferation in astrocytic tumors
5'-AMP-activated protein kinase (AMPK) is an energy sensor that controls cell metabolism, and it has been related to apoptosis and cell-cycle arrest. Although its role in metabolic homeostasis is well documented, its function in cancer is much less clear. In this study, we examined the role of AMPK in a mouse model of astrocytoma driven by oncogenic H-Ras(V12) and/or with PTEN deletion based on the common constitutive activation of the Raf/MEK/ERK and PI3K/AKT cascades in human astrocytomas. We also evaluated the activity and role of AMPK in human glioblastoma cells and xenografts. AMPK was constitutively activated in astrocytes expressing oncogenic H-Ras(V12) in parallel with high cell division rates. Genetic deletion of AMPK or attenuation of its activity in these cells was sufficient to reduce cell proliferation. The levels of pAMK were always related to the levels of phosphorylated retinoblastoma (Rb) at Ser804, which may indicate an AMPK-mediated phosphorylation of Rb. We confirmed this AMPK-Rb relationship in human glioblastoma cell lines and xenografts. In clinical specimens of human glioblastoma, elevated levels of activated AMPK appeared especially in areas of high proliferation surrounding the blood vessels. Together, our findings indicate that the initiation and progression of astrocytic tumors relies upon AMPK-dependent control of the cell cycle, thereby identifying AMPK as a candidate therapeutic target in this setting
The LKB1-salt-inducible kinase pathway functions as a key gluconeogenic suppressor in the liver
LKB1 is a master kinase that regulates metabolism and growth through adenosine monophosphate-activated protein kinase (AMPK) and 12 other closely related kinases. Liver-specific ablation of LKB1 causes increased glucose production in hepatocytes in vitro and hyperglycaemia in fasting mice in vivo. Here we report that the salt-inducible kinases (SIK1, 2 and 3), members of the AMPK-related kinase family, play a key role as gluconeogenic suppressors downstream of LKB1 in the liver. The selective SIK inhibitor HG-9-91-01 promotes dephosphorylation of transcriptional co-activators CRTC2/3 resulting in enhanced gluconeogenic gene expression and glucose production in hepatocytes, an effect that is abolished when an HG-9-91-01-insensitive mutant SIK is introduced or LKB1 is ablated. Although SIK2 was proposed as a key regulator of insulin-mediated suppression of gluconeogenesis, we provide genetic evidence that liver-specific ablation of SIK2 alone has no effect on gluconeogenesis and insulin does not modulate SIK2 phosphorylation or activity. Collectively, we demonstrate that the LKB1-SIK pathway functions as a key gluconeogenic gatekeeper in the liver
Regulation of glucagon secretion by glucose transporter type 2 (glut2) and astrocyte-dependent glucose sensors
Ripglut1;glut2-/- mice have no endogenous glucose transporter type 2 (glut2) gene expression but rescue glucose-regulated insulin secretion. Control of glucagon plasma levels is, however, abnormal, with fed hyperglucagonemia and insensitivity to physiological hypo- or hyperglycemia, indicating that GLUT2-dependent sensors control glucagon secretion. Here, we evaluated whether these sensors were located centrally and whether GLUT2 was expressed in glial cells or in neurons. We showed that ripglut1;glut2-/- mice failed to increase plasma glucagon levels following glucoprivation induced either by i.p. or intracerebroventricular 2-deoxy-D-glucose injections. This was accompanied by failure of 2-deoxy-D-glucose injections to activate c-Fos-like immunoreactivity in the nucleus of the tractus solitarius and the dorsal motor nucleus of the vagus. When glut2 was expressed by transgenesis in glial cells but not in neurons of ripglut1;glut2-/- mice, stimulated glucagon secretion was restored as was c-Fos-like immunoreactive labeling in the brainstem. When ripglut1;glut2-/- mice were backcrossed into the C57BL/6 genetic background, fed plasma glucagon levels were also elevated due to abnormal autonomic input to the alpha cells; glucagon secretion was, however, stimulated by hypoglycemic stimuli to levels similar to those in control mice. These studies identify the existence of central glucose sensors requiring glut2 expression in glial cells and therefore functional coupling between glial cells and neurons. These sensors may be activated at different glycemic levels depending on the genetic background
Polyomic profiling reveals significant hepatic metabolic alterations in glucagon-receptor (GCGR) knockout mice: implications on anti-glucagon therapies for diabetes
<p>Abstract</p> <p>Background</p> <p>Glucagon is an important hormone in the regulation of glucose homeostasis, particularly in the maintenance of euglycemia and prevention of hypoglycemia. In type 2 Diabetes Mellitus (T2DM), glucagon levels are elevated in both the fasted and postprandial states, which contributes to inappropriate hyperglycemia through excessive hepatic glucose production. Efforts to discover and evaluate glucagon receptor antagonists for the treatment of T2DM have been ongoing for approximately two decades, with the challenge being to identify an agent with appropriate pharmaceutical properties and efficacy relative to potential side effects. We sought to determine the hepatic & systemic consequence of full glucagon receptor antagonism through the study of the glucagon receptor knock-out mouse (Gcgr<sup>-/-</sup>) compared to wild-type littermates.</p> <p>Results</p> <p>Liver transcriptomics was performed using Affymetric expression array profiling, and liver proteomics was performed by iTRAQ global protein analysis. To complement the transcriptomic and proteomic analyses, we also conducted metabolite profiling (~200 analytes) using mass spectrometry in plasma. Overall, there was excellent concordance (R = 0.88) for changes associated with receptor knock-out between the transcript and protein analysis. Pathway analysis tools were used to map the metabolic processes in liver altered by glucagon receptor ablation, the most notable being significant down-regulation of gluconeogenesis, amino acid catabolism, and fatty acid oxidation processes, with significant up-regulation of glycolysis, fatty acid synthesis, and cholesterol biosynthetic processes. These changes at the level of the liver were manifested through an altered plasma metabolite profile in the receptor knock-out mice, e.g. decreased glucose and glucose-derived metabolites, and increased amino acids, cholesterol, and bile acid levels.</p> <p>Conclusions</p> <p>In sum, the results of this study suggest that the complete ablation of hepatic glucagon receptor function results in major metabolic alterations in the liver, which, while promoting improved glycemic control, may be associated with adverse lipid changes.</p
Increased FAT/CD36 Cycling and Lipid Accumulation in Myotubes Derived from Obese Type 2 Diabetic Patients
BACKGROUND: Permanent fatty acid translocase (FAT/)CD36 relocation has previously been shown to be related to abnormal lipid accumulation in the skeletal muscle of type 2 diabetic patients, however mechanisms responsible for the regulation of FAT/CD36 expression and localization are not well characterized in human skeletal muscle. METHODOLOGY/PRINCIPAL FINDINGS: Primary muscle cells derived from obese type 2 diabetic patients (OBT2D) and from healthy subjects (Control) were used to examine the regulation of FAT/CD36. We showed that compared to Control myotubes, FAT/CD36 was continuously cycling between intracellular compartments and the cell surface in OBT2D myotubes, independently of lipid raft association, leading to increased cell surface FAT/CD36 localization and lipid accumulation. Moreover, we showed that FAT/CD36 cycling and lipid accumulation were specific to myotubes and were not observed in reserve cells. However, in Control myotubes, the induction of FAT/CD36 membrane translocation by the activation of (AMP)-activated protein kinase (AMPK) pathway did not increase lipid accumulation. This result can be explained by the fact that pharmacological activation of AMPK leads to increased mitochondrial beta-oxidation in Control cells. CONCLUSION/SIGNIFICANCE: Lipid accumulation in myotubes derived from obese type 2 diabetic patients arises from abnormal FAT/CD36 cycling while lipid accumulation in Control cells results from an equilibrium between lipid uptake and oxidation. As such, inhibiting FAT/CD36 cycling in the skeletal muscle of obese type 2 diabetic patients should be sufficient to diminish lipid accumulation
Metformin reduces macrophage HIF1α-dependent proinflammatory signaling to restore brown adipocyte function in vitro
© 2021 The Authors.Therapeutic potential of metformin in obese/diabetic patients has been associated to its ability to combat insulin resistance. However, it remains largely unknown the signaling pathways involved and whether some cell types are particularly relevant for its beneficial effects. M1-activation of macrophages by bacterial lipopolysaccharide (LPS) promotes a paracrine activation of hypoxia-inducible factor-1α (HIF1α) in brown adipocytes which reduces insulin signaling and glucose uptake, as well as β-adrenergic sensitivity. Addition of metformin to M1-polarized macrophages blunted these signs of brown adipocyte dysfunction. At the molecular level, metformin inhibits an inflammatory program executed by HIF1α in macrophages by inducing its degradation through the inhibition of mitochondrial complex I activity, thereby reducing oxygen consumption in a reactive oxygen species (ROS)-independent manner. In obese mice, metformin reduced inflammatory features in brown adipose tissue (BAT) such as macrophage infiltration, proinflammatory signaling and gene expression, and restored the response to cold exposure. In conclusion, the impact of metformin on macrophages by suppressing a HIF1α-dependent proinflammatory program is likely responsible for a secondary beneficial effect on insulin-mediated glucose uptake and β-adrenergic responses in brown adipocytes.This work was funded by grants RTI2018-094052-B-100 (MCIN/AEI/10.13039/501100011033/FEDER) , S2017/BMD-3684 (Comunidad de Madrid, Spain), Fundación Ramón Areces (Spain) and CIBERdem (ISCIII) to A.M.V., grant S2010/BMD-2423 (Comunidad de Madrid, Spain) to M.J.O. and A.M.V., PID2019-106371RB-I00 (MCIN/ AEI /10.13039/501100011033/ FEDER) to J.A and PI16/00789 (ISCIII, Spain) to M.A.F.-M. We also acknowledge all members of AMV's laboratory for helpful discussions. M.F. and B.V were supported by Inserm, CNRS, Université de Paris, and Région Ile-de-France. We also acknowledge the EFSD Albert Reynolds travel grant fellowship to V.F
- …