2,252 research outputs found
From Minority Games to real markets
We address the question of market efficiency using the Minority Game (MG)
model. First we show that removing unrealistic features of the MG leads to
models which reproduce a scaling behavior close to what is observed in real
markets. In particular we find that i) fat tails and clustered volatility arise
at the phase transition point and that ii) the crossover to random walk
behavior of prices is a finite size effect. This, on one hand, suggests that
markets operate close to criticality, where the market is marginally efficient.
On the other it allows one to measure the distance from criticality of real
market, using cross-over times. The artificial market described by the MG is
then studied as an ecosystem with different_species_ of traders. This clarifies
the nature of the interaction and the particular role played by the various
populations.Comment: 9 pages, 7 figures, to appear in Quantitative Financ
Universality classes in directed sandpile models
We perform large scale numerical simulations of a directed version of the
two-state stochastic sandpile model. Numerical results show that this
stochastic model defines a new universality class with respect to the Abelian
directed sandpile. The physical origin of the different critical behavior has
to be ascribed to the presence of multiple topplings in the stochastic model.
These results provide new insights onto the long debated question of
universality in abelian and stochastic sandpiles.Comment: 5 pages, RevTex, includes 9 EPS figures. Minor english corrections.
One reference adde
Hyperbolicity Measures "Democracy" in Real-World Networks
We analyze the hyperbolicity of real-world networks, a geometric quantity
that measures if a space is negatively curved. In our interpretation, a network
with small hyperbolicity is "aristocratic", because it contains a small set of
vertices involved in many shortest paths, so that few elements "connect" the
systems, while a network with large hyperbolicity has a more "democratic"
structure with a larger number of crucial elements.
We prove mathematically the soundness of this interpretation, and we derive
its consequences by analyzing a large dataset of real-world networks. We
confirm and improve previous results on hyperbolicity, and we analyze them in
the light of our interpretation.
Moreover, we study (for the first time in our knowledge) the hyperbolicity of
the neighborhood of a given vertex. This allows to define an "influence area"
for the vertices in the graph. We show that the influence area of the highest
degree vertex is small in what we define "local" networks, like most social or
peer-to-peer networks. On the other hand, if the network is built in order to
reach a "global" goal, as in metabolic networks or autonomous system networks,
the influence area is much larger, and it can contain up to half the vertices
in the graph. In conclusion, our newly introduced approach allows to
distinguish the topology and the structure of various complex networks
Optimizing interpolation of shoot density data from a Posidonia oceanica seagrass bed
A case study on the optimization of Posidonia oceanica density interpolation, using a data set from a large meadow at Porto Conte Bay (NW Sardinia, Italy), is presented. Ordinary point kriging, cokriging and a weighted average based on inverse square distance were used to interpolate density data measured in 36 sampling stations. The results obtained from different methods were then compared by means of a leave-one-out cross-validation procedure. The scale at which interpolation was carried out was defined on the basis of the Hausdorff dimension of the variogram. Optimizing spatial scale and data points search strategy allowed obtaining more accurate density estimates independently of the interpolation method
Bovine β-casein: detection of two single nucleotide polymorphisms by bidirectional allele specific polymerase chain reaction (BAS-PCR) and monitoring of their variation
Is Europe Evolving Toward an Integrated Research Area?
Efforts toward European research and development (R&D) integration have a long history, intensifying with the Fifth Framework Programme (FP) in 1998 (1–3) and the launch of the European Research Area (ERA) initiative at the Lisbon European Council in 2000. A key component of the European Union (EU) strategy for innovation and growth (4, 5), the ERA aims to overcome national borders through directed funding, increased mobility, and streamlined innovation policies
Non conservative Abelian sandpile model with BTW toppling rule
A non conservative Abelian sandpile model with BTW toppling rule introduced
in [Tsuchiya and Katori, Phys. Rev. E {\bf 61}, 1183 (2000)] is studied. Using
a scaling analysis of the different energy scales involved in the model and
numerical simulations it is shown that this model belong to a universality
class different from that of previous models considered in the literature.Comment: RevTex, 5 pages, 6 ps figs, Minor change
Corrections to scaling in the forest-fire model
We present a systematic study of corrections to scaling in the self-organized
critical forest-fire model. The analysis of the steady-state condition for the
density of trees allows us to pinpoint the presence of these corrections, which
take the form of subdominant exponents modifying the standard finite-size
scaling form. Applying an extended version of the moment analysis technique, we
find the scaling region of the model and compute the first non-trivial
corrections to scaling.Comment: RevTeX, 7 pages, 7 eps figure
Ataxia with oculomotor apraxia type 2: a clinical, pathologic, and genetic study
BACKGROUND: Ataxia with oculomotor apraxia type 2 (AOA2) is characterized by
onset between age 10 and 22 years, cerebellar atrophy, peripheral neuropathy,
oculomotor apraxia (OMA), and elevated serum alpha-fetoprotein (AFP) levels.
Recessive mutations in SETX have been described in AOA2 patients.
OBJECTIVE: To describe the clinical features of AOA2 and to identify the SETX
mutations in 10 patients from four Italian families.
METHODS: The patients underwent clinical examination, routine laboratory tests,
nerve conduction studies, sural nerve biopsy, and brain MRI. All were screened
for SETX mutations.
RESULTS: All the patients had cerebellar features, including limb and truncal
ataxia, and slurred speech. OMA was observed in two patients, extrapyramidal
symptoms in two, and mental impairment in three. High serum AFP levels, motor and
sensory axonal neuropathy, and marked cerebellar atrophy on MRI were detected in
all the patients who underwent these examinations. Sural nerve biopsy revealed a
severe depletion of large myelinated fibers in one patient, and both large and
small myelinated fibers in another. Postmortem findings are also reported in one
of the patients. Four different homozygous SETX mutations were found (a
large-scale deletion, a missense change, a single-base deletion, and a
splice-site mutation).
CONCLUSIONS: The clinical phenotype of oculomotor apraxia type 2 is fairly
homogeneous, showing only subtle intrafamilial variability. OMA is an inconstant
finding. The identification of new mutations expands the array of SETX variants,
and the finding of a missense change outside the helicase domain suggests the
existence of at least one more functional region in the N-terminus of senataxin
- …
