1,215 research outputs found
New Analyses of Double-Bang Events in the Atmosphere
We use CORSIKA+Herwig simulation code to produce ultra-high energy neutrino
interactions in the atmosphere. Our aim is to reproduce extensive air showers
originated by extragalactic tau-neutrinos. For charged current tau-neutrino
interactions in the atmosphere, beside the air shower originated from the
neutrino interaction, it is expected that a tau is created and may decay before
reaching the ground. That phenomenon makes possible the generation of two
related extensive air showers, the so called Double-Bang event. We make an
analysis of the main characteristics of Double-Bang events in the atmosphere
for mean values of the parameters involved in such phenomenon, like the
inelasticity and tau decay length. We discuss what may happen for the ``out of
the average'' cases and conclude that it may be possible to observe this kind
of event in ultra-high energy cosmic ray observatories such as Pierre Auger or
Telescope Array.Comment: 17 pages, 5 figures, final version to appear in BJ
Rigorous Born Approximation and beyond for the Spin-Boson Model
Within the lowest-order Born approximation, we present an exact calculation
of the time dynamics of the spin-boson model in the ohmic regime. We observe
non-Markovian effects at zero temperature that scale with the system-bath
coupling strength and cause qualitative changes in the evolution of coherence
at intermediate times of order of the oscillation period. These changes could
significantly affect the performance of these systems as qubits. In the biased
case, we find a prompt loss of coherence at these intermediate times, whose
decay rate is set by , where is the coupling strength
to the environment. We also explore the calculation of the next order Born
approximation: we show that, at the expense of very large computational
complexity, interesting physical quantities can be rigorously computed at
fourth order using computer algebra, presented completely in an accompanying
Mathematica file. We compute the corrections to the long time
behavior of the system density matrix; the result is identical to the reduced
density matrix of the equilibrium state to the same order in . All
these calculations indicate precision experimental tests that could confirm or
refute the validity of the spin-boson model in a variety of systems.Comment: Greatly extended version of short paper cond-mat/0304118.
Accompanying Mathematica notebook fop5.nb, available in Source, is an
essential part of this work; it gives full details of the fourth-order Born
calculation summarized in the text. fop5.nb is prepared in arXiv style
(available from Wolfram Research
Interdisciplinary Medication Adherence Program: The Example of a University Community Pharmacy in Switzerland.
The Community Pharmacy of the Department of Ambulatory Care and Community Medicine (Policlinique Médicale Universitaire, PMU), University of Lausanne, developed and implemented an interdisciplinary medication adherence program. The program aims to support and reinforce medication adherence through a multifactorial and interdisciplinary intervention. Motivational interviewing is combined with medication adherence electronic monitors (MEMS, Aardex MWV) and a report to patient, physician, nurse, and other pharmacists. This program has become a routine activity and was extended for use with all chronic diseases. From 2004 to 2014, there were 819 patient inclusions, and 268 patients were in follow-up in 2014. This paper aims to present the organization and program's context, statistical data, published research, and future perspectives
Measurement of the tensor Ayy and vector Ay analyzing powers of the deuteron inelastic scattering off berillium at 5.0 GeV/c and 178 mr
Tensor Ayy and vector Ay analyzing powers in the inelastic scattering of
deuterons with the momentum of 5.0 GeV/c on beryllium at an angle of 178 mr in
the vicinity of the excitation of baryonic resonances with masses up to
1.8 GeV/c^2 have been measured. The Ayy data are in a good agreement with the
previous data obtained at 4.5 and 5.5 GeV/c. The results of the experiment are
compared with the predictions of the plane wave impulse approximation and
\omega-meson exchange models.Comment: 18 pages, 9 figure
Quantum Computation with Quantum Dots
We propose a new implementation of a universal set of one- and two-qubit
gates for quantum computation using the spin states of coupled single-electron
quantum dots. Desired operations are effected by the gating of the tunneling
barrier between neighboring dots. Several measures of the gate quality are
computed within a newly derived spin master equation incorporating decoherence
caused by a prototypical magnetic environment. Dot-array experiments which
would provide an initial demonstration of the desired non-equilibrium spin
dynamics are proposed.Comment: 12 pages, Latex, 2 ps figures. v2: 20 pages (very minor corrections,
substantial expansion), submitted to Phys. Rev.
Cytotoxic T cells and mycobacteria
How the immune system kills Mycobacterium tuberculosis is still a puzzle. the classical picture of killing due to phagocytosis by activated macrophages may be only partly correct. Based on recent evidence, we express here the view that cytotoxic T lymphocytes also make an important contribution and suggest that DNA vaccines might be a good way to enhance this. (C) 2001 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.Univ São Paulo, Sch Med Ribeirao Preto, Dept Biochem & Immunol, BR-14049900 Ribeirao Preto, SP, BrazilUniv São Paulo, Sch Pharmaceut Sci Ribeirao Preto, Dept Clin Anal Bromatol & Toxicol, BR-14049 Ribeirao Preto, SP, BrazilUniversidade Federal de São Paulo, Dept Microbiol & Immunol, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Microbiol & Immunol, São Paulo, BrazilWeb of Scienc
Mycobacterium tuberculosis expressing phospholipase C subverts PGE(2) synthesis and induces necrosis in alveolar macrophages
Background: Phospholipases C (PLCs) are virulence factors found in several bacteria. in Mycobacterium tuberculosis (Mtb) they exhibit cytotoxic effects on macrophages, but the mechanisms involved in PLC-induced cell death are not fully understood. It has been reported that induction of cell necrosis by virulent Mtb is coordinated by subversion of PGE(2), an essential factor in cell membrane protection.Results: Using two Mtb clinical isolates carrying genetic variations in PLC genes, we show that the isolate 97-1505, which bears plcA and plcB genes, is more resistant to alveolar macrophage microbicidal activity than the isolate 97-1200, which has all PLC genes deleted. the isolate 97-1505 also induced higher rates of alveolar macrophage necrosis, and likewise inhibited COX-2 expression and PGE(2) production. To address the direct effect of mycobacterial PLC on cell necrosis and PGE(2) inhibition, both isolates were treated with PLC inhibitors prior to macrophage infection. Interestingly, inhibition of PLCs affected the ability of the isolate 97-1505 to induce necrosis, leading to cell death rates similar to those induced by the isolate 97-1200. Finally, PGE(2) production by Mtb 97-1505-infected macrophages was restored to levels similar to those produced by 97-1200-infected cells.Conclusions: Mycobacterium tuberculosis bearing PLCs genes induces alveolar macrophage necrosis, which is associated to subversion of PGE(2) production.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Univ São Paulo, Fac Ciencias Farmaceut Ribeirao Preto, Dept Anal Clin Toxicol & Bromatol, BR-14040903 Ribeirao Preto, SP, BrazilUniversidade Federal de São Paulo, Escola Paulista Med, Dept Microbiol Imunol & Parasitol, São Paulo, BrazilUniv São Paulo, Fac Ciencias Farmaceut Ribeirao Preto, Dept Bioquim & Imunol, BR-14040903 Ribeirao Preto, SP, BrazilUniversidade Federal de São Paulo, Escola Paulista Med, Dept Microbiol Imunol & Parasitol, São Paulo, BrazilFAPESP: 2009/07169-5FAPESP: 2011/01845-9Web of Scienc
High Altitude test of RPCs for the ARGO-YBJ experiment
A 50 m**2 RPC carpet was operated at the YangBaJing Cosmic Ray Laboratory
(Tibet) located 4300 m a.s.l. The performance of RPCs in detecting Extensive
Air Showers was studied. Efficiency and time resolution measurements at the
pressure and temperature conditions typical of high mountain laboratories, are
reported.Comment: 16 pages, 10 figures, submitted to Nucl. Instr. Met
The problem of equilibration and the computation of correlation functions on a quantum computer
We address the question of how a quantum computer can be used to simulate
experiments on quantum systems in thermal equilibrium. We present two
approaches for the preparation of the equilibrium state on a quantum computer.
For both approaches, we show that the output state of the algorithm, after long
enough time, is the desired equilibrium. We present a numerical analysis of one
of these approaches for small systems. We show how equilibrium
(time)-correlation functions can be efficiently estimated on a quantum
computer, given a preparation of the equilibrium state. The quantum algorithms
that we present are hard to simulate on a classical computer. This indicates
that they could provide an exponential speedup over what can be achieved with a
classical device.Comment: 25 pages LaTex + 8 figures; various additional comments, results and
correction
- …
