11 research outputs found

    Topological insulators and thermoelectric materials

    Full text link
    Topological insulators (TIs) are a new quantum state of matter which have gapless surface states inside the bulk energy gap. Starting with the discovery of two dimensional TIs, the HgTe-based quantum wells, many new topological materials have been theoretically predicted and experimentally observed. Currently known TI materials can possibly be classified into two families, the HgTe family and the Bi2Se family. The signatures found in the electronic structure of a TI also cause these materials to be excellent thermoelectric materials. On the other hand, excellent thermoelectric materials can be also topologically trivial. Here we present a short introduction to topological insulators and thermoelectrics, and give examples of compound classes were both good thermoelectric properties and topological insulators can be found.Comment: Phys. Status Solidi RRL, accepte

    Lone Pair Effect, Structural Distortions and Potential for Superconductivity in Tl Perovskites

    Full text link
    Drawing the analogy to BaBiO3, we investigate via ab-initio electronic structure calculations potential new superconductors of the type ATlX3 with A = Rb, Cs and X = F, Cl, and Br, with a particular emphasis on RbTlCl3. Based on chemical reasoning, supported by the calculations, we show that Tl-based perovskites have structural and charge instabilities driven by the lone pair effect, similar to the case of BaBiO3, effectively becoming A2Tl1+Tl3+X6. We find that upon hole doping of RbTlCl3, structures without Tl1+, Tl3+ charge disproportionation become more stable, although the ideal cubic perovskite, often viewed as the best host for superconductivity, should not be the most stable phase in the system. The known superconductor (Sr,K)BiO3 and hole doped RbTlCl3, predicted to be most stable in the same tetragonal structure, display highly analogous calculated electronic band structures.Comment: 5 pages, 5 figure

    Topological insulators in filled skutterudites

    Full text link
    We propose new topological insulators in cerium filled skutterudite (FS) compounds based on ab initio calculations. We find that two compounds CeOs4As12 and CeOs4Sb12 are zero gap materials with band inversion between Os-d and Ce-f orbitals, which are thus parent compounds of two and three-dimensional topological insulators just like bulk HgTe. At low temperature, both compounds become topological Kondo insulators, which are Kondo insulators in the bulk, but have robust Dirac surface states on the boundary. This new family of topological insulators has two advantages compared to previous ones. First, they can have good proximity effect with other superconducting FS compounds to realize Majarona fermions. Second, the antiferromagnetism of CeOs4Sb12 at low temperature provides a way to realize the massive Dirac fermion with novel topological phenomena.Comment: 4 page, 3 figure

    Topological Insulators in Ternary Compounds with a Honeycomb Lattice

    Full text link
    One of the most exciting subjects in solid state physics is a single layer of graphite which exhibits a variety of unconventional novel properties. The key feature of its electronic structure are linear dispersive bands which cross in a single point at the Fermi energy. This so-called Dirac cone is closely related to the surface states of the recently discovered topological insulators. The ternary compounds, such as LiAuSe and KHgSb with a honeycomb structure of their Au-Se and Hg-Sb layers feature band inversion very similar to HgTe which is a strong precondition for existence of the topological surface states. In contrast to graphene with two Dirac cones at K and K' points, these materials exhibit the surface states formed by only a single Dirac cone at the \Gamma -point together with the small direct band gap opened by a strong spin-orbit coupling (SOC) in the bulk. These materials are centro-symmetric, therefore, it is possible to determine the parity of their wave functions, and hence, their topological character. Surprisingly, the compound KHgSb with the strong SOC is topologically trivial, whereas LiAuSe is found to be a topological non-trivial insulator.Comment: 4 pages + 1 page supplementa

    Surface floating 2D bands in layered nonsymmorphic semimetals : ZrSiS and related compounds

    Get PDF
    Work at Argonne National Laboratory is supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357; additional support by National Science Foundation under Grant No. DMR-0703406. This work was partially supported by the DFG, proposal no. SCHO 1730/1-1.In this work, we present a model of the surface states of nonsymmorphic semimetals. These are derived from surface mass terms that lift the high degeneracy imposed on the band structure by the nonsymmorphic bulk symmetries. Reflecting the reduced symmetry at the surface, the bulk bands are strongly modified. This leads to the creation of two-dimensional floating or unpinned bands, which are distinct from Shockley states, quantum well states, or topologically protected surface states. We focus on the layered semimetal ZrSiS to clarify the origin of its surface states. We demonstrate an excellent agreement between density functional theory calculations and angle-resolved photoemission spectroscopy measurements and present an effective four-band model in which similar surface bands appear. Finally, we emphasize the role of the surface chemical potential by comparing the surface density of states in samples with and without potassium coating. Our findings can be extended to related compounds and generalized to other crystals with nonsymmorphic symmetries.Publisher PDFPeer reviewe

    Superconductivity in the Cu(Ir

    No full text
    We report the observation of superconductivity in the CuIr2Se4 spinel induced by partial substitution of Pt for Ir. The optimal doping level for superconductivity in Cu(Ir1-xPtx)2Se4 is x = 0.2, where Tc is 1.76 K. A superconducting Tc vs. composition dome is established between the metallic, normal conductor CuIr2Se4 and semiconducting CuIrPtSe4. Electronic structure calculations show that the optimal Tc occurs near the electron count of a large peak in the calculated electronic density of states and that CuIrPtSe4 is a band-filled insulator. Characterization of the superconducting state in this heavy metal spinel through determination of {\Delta}C/{\gamma}Tc, indicates that it is BCS-like. The relatively high upper critical field at the optimal superconducting composition (Hc2(0) = 3.2 T) is much larger than that reported for analogous rhodium spinels and is comparable to or exceeds the Pauli field (mu0Hp), suggesting that strong spin orbit coupling may influence the superconducting state. Further, comparison to doped CuIr2S4 suggests that superconductivity in iridium spinels is not necessarily associated with the destabilization of a charge-ordered spin-paired state through doping

    Large resistivity change and phase transition in the antiferromagnetic semiconductors LiMnAs and LaOMnAs

    Get PDF
    Antiferromagnetic semiconductors are new alternative materials for spintronic applications and spin valves. In this work, we report a detailed investigation of two antiferromagnetic semiconductors AMnAs (A = Li, LaO), which are isostructural to the well-known LiFeAs and LaOFeAs superconductors. Here we present a comparison between the structural, magnetic, and electronic properties of LiMnAs, LaOMnAs, and related materials. Interestingly, both LiMnAs and LaOMnAs show a variation in resistivity with more than five orders of magnitude, making them particularly suitable for use in future electronic devices. Neutron and x-ray diffraction measurements on LiMnAs show a magnetic phase transition corresponding to the N´eel temperature of 373.8 K, and a structural transition from the tetragonal to the cubic phase at 768 K. These experimental results are supported by density functional theory calculations
    corecore