5 research outputs found

    Guidebook for Omaha\u27s Urban Geology and Anthropocene Nebraska Well Drillers 2022 Field Trip

    Get PDF
    This geologic field trip focus is somewhat atypical but arguably reflects an ongoing evolution within the geosciences. Instead of traveling out into rural settings to look at outcrops and the stratigraphy exposed, or rural landforms and their geologic history, this field trip is focused on built and engineered environments in the Omaha area and the ‘modified’ associated geologic processes such as surface and groundwater flow, weathering, and soil formation. The ongoing evolution includes an increase in a multidisciplinary system science approach and is driven by a need to address environmental and resource management challenges using new tools and conceptual frameworks. One example is the concept of the critical zone, the zone encompassing the vegetation canopy down to groundwater. This framework is crucial to understanding endeavors at Glacier Creek Preserve and provides an example of an application of a system science approach and the role that technology plays. These topics are also part of the environmental geology courses we teach at UNO where we explore the interplay between geologic knowledge and human endeavors.https://digitalcommons.unomaha.edu/geoggeolfacbooks/1006/thumbnail.jp

    Spatial and temporal ecological uniqueness of Andean diatom communities are correlated with climate, geodiversity and long-term limnological change

    Get PDF
    High-elevation tropical lakes are excellent sentinels of global change impacts, such as climate warming, land-use change, and atmospheric deposition. These effects are often correlated with temporal and spatial beta diversity patterns, with some local communities contributing more than others, a phenomenon known as local contribution to beta diversity (LCBD) or ecological uniqueness. Microorganisms, such as diatoms, are considered whole-ecosystem indicators, but little is known about their sensitivity and specificity in beta diversity studies mostly because of the lack of large spatial and temporal datasets. To fill this gap, we used a tropical South American diatom database comprising modern (144 lakes) and paleolimnological (6 sediment cores) observations to quantify drivers of spatial and temporal beta diversity and evaluated implications for environmental change and regional biodiversity. We used methods of beta diversity partitioning (replacement and richness components) by determining contributions of local sites to these components (LCBDrepl and LCBDrich), and studied how they are related to environmental, geological, and historical human variables using Generalized Additive Models (GAM). Beta replacement time series were also analyzed with GAM to test whether there is widespread biotic homogenization across the tropical Andes. Modern lake ecological uniqueness was jointly explained by limnological (pH), climatic (mean annual precipitation), and historical human density. Local lake (conductivity) and regional geodiversity variables (terrain ruggedness, soil variability) were inversely correlated to replacement and richness components of LCBD, suggesting that not all lakes contributing to broad-scale diversity are targets for conservation actions. Over millennial time scales, decomposing temporal trends of beta diversity components showed different trajectories of lake diatom diversity as response of environmental change: i) increased hydroclimatic variability (as inferred by decreased temperature seasonality) mediating higher contribution of richness to local beta diversity patterns ca. 1000 years ago in Ecuador Andean lakes and ii) lake-specific temporal beta diversity trends for the last ca. 200 years, indicating that biotic homogenization is not widespread across the tropical Andes. Our approach for unifying diatom ecology, metacommunity, and paleolimnology can facilitate the understanding of future responses of tropical Andean lakes to global change impacts

    Paleolimnological responses of Ecuadorian páramo lakes to local and regional stressors over the last two millennia

    No full text
    Increasing surface air temperatures and human influences (e.g., agriculture, livestock grazing, tourism) are altering lacustrine ecosystems in the South American Andean páramo, and these influences are evident in changes in the diatom-species composition in sediment cores from the region that span the last ~ 150 years. Existing studies are limited by their short temporal scales and limited spatial extent. We analyzed two sediment cores spanning the last two millennia from the northern (Laguna Piñan) and southern (Laguna Fondococha) Andean páramo of Ecuador to provide a longer-term perspective on lake dynamics. Both lakes show shifts in the dominant diatoms through time. Fondococha diatoms shifted in dominance between two Aulacoseira species and in the planktic to benthic ratio, and these shifts are interpreted as evidence of changing lake level. The inferred shifts are corroborated by changes in sediment geochemistry. Piñan shows a directional shift in the diatom assemblage over the period of the record, from benthic diatoms tolerant of high dissolved organic carbon (DOC), low pH, and low nutrients, to an assemblage characteristic of lower DOC, higher pH, nutrients and lake levels. Shifts in Piñan’s diatoms are correlated with tephra layers in the sediment, suggesting that local volcanic deposition may have been responsible for altering the catchment and lake geochemistry. This is supported by relatively high δ13C values in organic matter associated with tephra layers, which become more negative up-section. Our study suggests that remote lakes in spatially heterogenous montane regions act as sentinels of different facets of environmental change and provide insights into Andean ecosystem responses to environmental perturbations.info:eu-repo/semantics/acceptedVersio

    Exceptional preservation in Quaternary Atacama Desert Tufas: Evidence for increased groundwater and surface water in the Calama Basin, Atacama, Chile

    No full text
    Abstract Exceptionally well‐preserved tufas located west of Calama, Atacama Desert, Chile, designated Santa Juana tufas, record episodic wetter conditions, relative to today, over the past 500,000 years. Globally, tufa architecture and depositional details are poorly understood as most described tufas have been degraded by weathering and erosion. In the hyperarid Atacama, post‐depositional alteration is negligible, therefore, the exceptional preservation of Santa Juana tufas documented in this study provides new information about tufa facies and their complex interactions. Santa Juana facies include microbial stromatolites, phytoherms, cascadestone, flowstone and porous limestone. Phytoherms, consisting of former plant stems coated with calcite, developed in channels, within pools, and along spring discharge aprons. Cascadestone, representing former waterfalls, preserves microbial filaments and delicate V‐shaped calcite crystals. Flowstone lines shallow subvertical to subhorizontal channels, representing sites of rapidly sluicing water flow. Porous limestone, containing sparse calcite and/or gypsum and anhydrite cement crystals, represents detrital accumulations. Stable isotope results, coupled with U/Th ages, show that by the Quaternary, relative to the Neogene, groundwater was less supercharged with volcanogenic CO2 so degassing was moderated. The δ18O ratios from Miocene–Pliocene palustrine and lacustrine freshwater carbonates that underlie Santa Juana tufas indicate significant evaporation, but the tufa δ18O signal indicates a less evaporative trend due to shorter atmosphere exposure time. Biological fractionation in δ13C is largely masked by the region's volcanogenic carbon footprint, although tufa petrography shows well‐preserved microbial filaments and laminations. The range of tufa ages in this study shows that there were wetter time periods within the drainage basin headwater area in the Quaternary, but that by the late Pleistocene to early Holocene, aridity to hyperaridity became established. The lack of diagenesis or alteration within the Santa Juana tufas indicates that there has been minimal rainfall since their deposition

    Spatial and temporal ecological uniqueness of Andean diatom communities are correlated with climate, geodiversity and long-term limnological change

    No full text
    Abstract High-elevation tropical lakes are excellent sentinels of global change impacts, such as climate warming, land-use change, and atmospheric deposition. These effects are often correlated with temporal and spatial beta diversity patterns, with some local communities contributing more than others, a phenomenon known as local contribution to beta diversity (LCBD) or ecological uniqueness. Microorganisms, such as diatoms, are considered whole-ecosystem indicators, but little is known about their sensitivity and specificity in beta diversity studies mostly because of the lack of large spatial and temporal datasets. To fill this gap, we used a tropical South American diatom database comprising modern (144 lakes) and paleolimnological (6 sediment cores) observations to quantify drivers of spatial and temporal beta diversity and evaluated implications for environmental change and regional biodiversity. We used methods of beta diversity partitioning (replacement and richness components) by determining contributions of local sites to these components (LCBDrepl and LCBDrich), and studied how they are related to environmental, geological, and historical human variables using Generalized Additive Models (GAM). Beta replacement time series were also analyzed with GAM to test whether there is widespread biotic homogenization across the tropical Andes. Modern lake ecological uniqueness was jointly explained by limnological (pH), climatic (mean annual precipitation), and historical human density. Local lake (conductivity) and regional geodiversity variables (terrain ruggedness, soil variability) were inversely correlated to replacement and richness components of LCBD, suggesting that not all lakes contributing to broad-scale diversity are targets for conservation actions. Over millennial time scales, decomposing temporal trends of beta diversity components showed different trajectories of lake diatom diversity as response of environmental change: i) increased hydroclimatic variability (as inferred by decreased temperature seasonality) mediating higher contribution of richness to local beta diversity patterns ca. 1000 years ago in Ecuador Andean lakes and ii) lake-specific temporal beta diversity trends for the last ca. 200 years, indicating that biotic homogenization is not widespread across the tropical Andes. Our approach for unifying diatom ecology, metacommunity, and paleolimnology can facilitate the understanding of future responses of tropical Andean lakes to global change impacts
    corecore