607 research outputs found

    Changing from "Gymnasium" to "Mittelschule"

    Full text link
    In den aktuellen Debatten zur Reform des deutschen Bildungswesens wird häufig das Zwei-Säulen-Modell propagiert. Ein solches System, wie es u.a. in Sachsen besteht, müsste auch gewährleisten, dass Korrekturen des Bildungsgangs ohne gravierende Probleme möglich sind. Die Forschergruppe hat in Dresden Schulformwechsler von Gymnasien zu Mittelschulen untersucht. Zusammenfassend charakterisiert sie die Problematik bildungsbiografisch als Endpunkt eines längeren demotivierenden Misserfolgsweges. Die befragten Lehrkräfte schlagen zur Lösung mehrheitlich eine Verlagerung der Schullaufbahnentscheidung auf einen späteren Zeitpunkt vor. (DIPF/Orig.)Within current debates, a reform of the German school system from a three-tiered into a two-tiered system is being propagated. Such a system, as already exists in Saxony, would have to guarantee that a change in the course of education can be realized unproblematically. The research group has accompanied students changing from Gymnasium to Mittelschule in Dresden, a change that marks the endpoint of a longer, demotivating journey of failure. As a solution, the majority of the interviewed teachers proposed to postpone the selection of students, which currently is done after grade four. (DIPF/Orig.

    Rare isolation of human-tropic recombinant porcine endogenous retroviruses PERV-A/C from Göttingen minipigs

    Get PDF
    Background: Porcine endogenous retroviruses (PERVs) can infect human cells and pose a risk for xenotransplantation when pig cells, tissues or organs are transplanted to human recipients. Xenotransplantation holds great promise to overcome the shortage of human donor organs after solving the problems of rejection, functionality and virus safety. We recently described the transmission of a human-tropic recombinant PERV-A/C, designated PERV-F, from peripheral blood mononuclear cells (PBMCs) of a Göttingen Minipig (GöMP) to human 293 cells (Krüger et al., in Viruses 12(1):38, 2019). The goal of this study was to characterize PERV-F in more detail and to analyze the probability of virus isolation from other animals. Methods: The recombination site in the envelope (env) gene, the long terminal repeats (LTR), the proteins and the morphology of the recombinant PERV-F were characterized by polymerase chain reaction (PCR), sequencing, Western blot analysis, immunofluorescence, and transmissible electron microscopy. Mitogen-stimulated PBMCs from 47 additional pigs, including 17 new GöMP, were co-cultured with highly susceptible human 293 T cells, and the PERV-A/C prevalence and PERV transmission was analyzed by PCR. Results: PERV-F, isolated from a GöMP, is an infectious human-tropic PERV-A/C virus with a novel type of recombination in the env gene. The length of the LTR of PERV-F increased after passaging on human cells. In a few minipigs, but not in German landrace pigs, PERV-A/C were found. There was no transmission of human-tropic PERV-A/C from additional 47 pigs, including 17 GöMP, to human cells. Conclusion: These data show that human-tropic recombinant PERV-A/C proviruses can only be found in a very small number of minipigs, but not in other pigs, and that their isolation as infectious virus able to replicate on human cells is an extremely rare event, even when using highly susceptible 293 cells.Peer Reviewe

    Rare isolation of human-tropic recombinant porcine endogenous retroviruses PERV-A/C from Göttingen minipigs

    Get PDF
    Background Porcine endogenous retroviruses (PERVs) can infect human cells and pose a risk for xenotransplantation when pig cells, tissues or organs are transplanted to human recipients. Xenotransplantation holds great promise to overcome the shortage of human donor organs after solving the problems of rejection, functionality and virus safety. We recently described the transmission of a human-tropic recombinant PERV-A/C, designated PERV-F, from peripheral blood mononuclear cells (PBMCs) of a Göttingen Minipig (GöMP) to human 293 cells (Krüger et al., in Viruses 12(1):38, 2019). The goal of this study was to characterize PERV-F in more detail and to analyze the probability of virus isolation from other animals. Methods The recombination site in the envelope (env) gene, the long terminal repeats (LTR), the proteins and the morphology of the recombinant PERV-F were characterized by polymerase chain reaction (PCR), sequencing, Western blot analysis, immunofluorescence, and transmissible electron microscopy. Mitogen-stimulated PBMCs from 47 additional pigs, including 17 new GöMP, were co-cultured with highly susceptible human 293 T cells, and the PERV-A/C prevalence and PERV transmission was analyzed by PCR. Results PERV-F, isolated from a GöMP, is an infectious human-tropic PERV-A/C virus with a novel type of recombination in the env gene. The length of the LTR of PERV-F increased after passaging on human cells. In a few minipigs, but not in German landrace pigs, PERV-A/C were found. There was no transmission of human-tropic PERV-A/C from additional 47 pigs, including 17 GöMP, to human cells. Conclusion These data show that human-tropic recombinant PERV-A/C proviruses can only be found in a very small number of minipigs, but not in other pigs, and that their isolation as infectious virus able to replicate on human cells is an extremely rare event, even when using highly susceptible 293 cells

    Quality Assessment of Photogrammetric Methods—A Workflow for Reproducible UAS Orthomosaics

    Get PDF
    Unmanned aerial systems (UAS) are cost-effective, flexible and offer a wide range of applications. If equipped with optical sensors, orthophotos with very high spatial resolution can be retrieved using photogrammetric processing. The use of these images in multi-temporal analysis and the combination with spatial data imposes high demands on their spatial accuracy. This georeferencing accuracy of UAS orthomosaics is generally expressed as the checkpoint error. However, the checkpoint error alone gives no information about the reproducibility of the photogrammetrical compilation of orthomosaics. This study optimizes the geolocation of UAS orthomosaics time series and evaluates their reproducibility. A correlation analysis of repeatedly computed orthomosaics with identical parameters revealed a reproducibility of 99% in a grassland and 75% in a forest area. Between time steps, the corresponding positional errors of digitized objects lie between 0.07 m in the grassland and 0.3 m in the forest canopy. The novel methods were integrated into a processing workflow to enhance the traceability and increase the quality of UAS remote sensing.This research was funded by the Hessian State Ministry for Higher Education, Research and the Arts, Germany, as part of the LOEWE priority project Nature 4.0—Sensing Biodiversity. The grassland study was funded by the Spanish Science Foundation FECYT-MINECO through the BIOGEI (GL2013- 49142-C2-1-R) and IMAGINE (CGL2017-85490-R) projects, and by the University of Lleida; and supported by a FI Fellowship to C.M.R. (2019 FI_B 01167) by the Catalan Government

    First virological and pathological study of Go¨ttingen Minipigs with Dippity Pig Syndrome (DPS)

    Get PDF
    Dippity Pig Syndrome (DPS) is a well-known but rare complex of clinical signs affecting minipigs, which has not been thoroughly investigated yet. Clinically affected animals show acute appearance of red, exudating lesions across the spine. The lesions are painful, evidenced by arching of the back (dipping), and the onset of clinical signs is generally sudden. In order to understand the pathogenesis, histological and virological investigations were performed in affected and unaffected Göttingen Minipigs (GöMPs). The following DNA viruses were screened for using PCR-based methods: Porcine cytomegalovirus (PCMV), which is a porcine roseolovirus (PCMV/PRV), porcine lymphotropic herpesviruses (PLHV-1, PLHV-2, PLHV-3), porcine circoviruses (PCV1, PCV2, PCV3, PCV4), porcine parvovirus 1 (PPV1), and Torque Teno sus viruses (TTSuV1, TTSuV2). Screening was also performed for integrated porcine endogenous retroviruses (PERV-A, PERV-B, PERV-C) and recombinant PERV-A/C and their expression as well as for the RNA viruses hepatitis E virus (HEV) and SARS-CoV-2. Eight clinically affected and one unaffected GöMPs were analyzed. Additional unaffected minipigs had been analyzed in the past. The analyzed GöMPs contained PERV-A and PERV-B integrated in the genome, which are present in all pigs and PERV-C, which is present in most, but not all pigs. In one affected GöMPs recombinant PERV-A/C was detected in blood. In this animal a very high expression of PERV mRNA was observed. PCMV/PRV was found in three affected animals, PCV1 was found in three animals with DPS and in the unaffected minipig, and PCV3 was detected in two animals with DPS and in the unaffected minipig. Most importantly, in one animal only PLHV-3 was detected. It was found in the affected and unaffected skin, and in other organs. Unfortunately, PLHV-3 could not be studied in all other affected minipigs. None of the other viruses were detected and using electron microscopy, no virus particles were found in the affected skin. No porcine virus RNA with exception of PERV and astrovirus RNA were detected in the affected skin by next generation sequencing. This data identified some virus infections in GöMPs with DPS and assign a special role to PLHV-3. Since PCMV/PRV, PCV1, PCV3 and PLHV-3 were also found in unaffected animals, a multifactorial cause of DPS is suggested. However, elimination of the viruses from GöMPs may prevent DPS
    corecore