64 research outputs found

    Quantum thermometry using the ac Stark shift within the Rabi model

    Get PDF
    This work was supported by the EPSRC, the National Research Foundation and Ministry of Education, Singapore, and the Royal Society.A quantum two-level system coupled to a harmonic oscillator represents a ubiquitous physical system. New experiments in circuit QED and nanoelectromechanical systems (NEMS) achieve unprecedented coupling strength at large detuning between qubit and oscillator, thus requiring a theoretical treatment beyond the Jaynes-Cummings model. Here we present a new method for describing the qubit dynamics in this regime, based on an oscillator correlation function expansion of a non-Markovian master equation in the polaron frame. Our technique yields a new numerical method as well as a succinct approximate expression for the qubit dynamics. These expressions are valid in the experimentally interesting regime of strong coupling at low temperature. We obtain a new expression for the ac Stark shift and show that this enables practical and precise qubit thermometry of an oscillator.Peer reviewe

    Efficient real-time path integrals for non-Markovian spin-boson models

    Get PDF
    Funders: Strathearn - EPSRC, ID: EP/L505079/1, Lovett - EPSRC, ID: EP/K025562/1, Kirton- EPSRC, ID: EP/M010910/1Strong coupling between a system and its environment leads to the emergence of non-Markovian dynamics, which cannot be described by a time-local master equation. One way to capture such dynamics is to use numerical real-time path integrals, where assuming a finite bath memory time enables manageable simulation scaling. However, by comparing to the exactly soluble independent boson model, we show that the presence of transient negative decay rates in the exact dynamics can result in simulations with unphysical exponential growth of density matrix elements when the finite memory approximation is used. We therefore reformulate this approximation in such a way that the exact dynamics are reproduced identically and then apply our new method to the spin-boson model with superohmic environmental coupling, commonly used to model phonon environments, but which cannot be solved exactly. Our new method allows us to easily access parameter regimes where we find revivals in population dynamics which are due to non-Markovian backflow of information from the bath to the system.Publisher PDFPeer reviewe

    Designing spin-channel geometries for entanglement distribution

    Get PDF
    We investigate different geometries of spin-1/2 nitrogen impurity channels for distributing entanglement between pairs of remote nitrogen vacancy centers (NVs) in diamond. To go beyond the system size limits imposed by directly solving the master equation, we implement a matrix product operator method to describe the open system dynamics. In so doing, we provide an early demonstration of how the time-evolving block decimation algorithm can be used for answering a problem related to a real physical system that could not be accessed by other methods. For a fixed NV separation there is an interplay between incoherent impurity spin decay and coherent entanglement transfer: Long-transfer-time, few-spin systems experience strong dephasing that can be overcome by increasing the number of spins in the channel. We examine how missing spins and disorder in the coupling strengths affect the dynamics, finding that in some regimes a spin ladder is a more effective conduit for information than a single-spin chain.Publisher PDFPeer reviewe

    Coherent exciton dynamics in a dissipative environment maintained by an off-resonant vibrational mode

    Get PDF
    This work was supported by the Leverhulme Trust (RPG-080) and the EPSRC (EP/G03673X/1).The interplay between an open quantum system and its environment can lead to both coherent and incoherent behavior. We explore the extent to which strong coupling to a single bosonic mode can alter the coherence properties of a two-level system in a structured environment. This mode is treated exactly, with the rest of the environment comprising a Markovian bath of bosonic modes. The strength of the coupling between the two-level system and the single mode is varied for a variety of forms for the bath spectral density in order to assess whether the coherent dynamics of the two-level system are modified. We find a clear renormalization of the site population oscillation frequency that causes an altered interaction with the bath. This leads to enhanced or reduced coherent behavior of the two-level system, depending on the form of the spectral density function. We present an intuitive interpretation, based on an analytical model, to explain the behavior.Publisher PDFPeer reviewe

    From non-Markovian dissipation to spatiotemporal control of quantum nanodevices

    Get PDF
    Funding: TL, AWC and BWL thank the Defence Science and Technology Laboratory (Dstl) and Direction Générale de l’Armement (DGA) for support through the Anglo-French PhD scheme. BWL acknowledges support from EPSRC grant EP/T014032/1.Nanodevices exploiting quantum effects are critically important elements of future quantum technologies (QT), but their real-world performance is strongly limited by decoherence arising from local `environmental' interactions. Compounding this, as devices become more complex, i.e. contain multiple functional units, the `local' environments begin to overlap, creating the possibility of environmentally mediated decoherence phenomena on new time-and-length scales. Such complex and inherently non-Markovian dynamics could present a challenge for scaling up QT, but – on the other hand – the ability of environments to transfer `signals' and energy might also enable sophisticated spatiotemporal coordination of inter-component processes, as is suggested to happen in biological nanomachines, like enzymes and photosynthetic proteins. Exploiting numerically exact many body methods (tensor networks) we study a fully quantum model that allows us to explore how propagating environmental dynamics can instigate and direct the evolution of spatially remote, non-interacting quantum systems. We demonstrate how energy dissipated into the environment can be remotely harvested to create transient excited/reactive states, and also identify how reorganisation triggered by system excitation can qualitatively and reversibly alter the `downstream' kinetics of a `functional' quantum system. With access to complete system-environment wave functions, we elucidate the microscopic processes underlying these phenomena, providing new insight into how they could be exploited for energy efficient quantum devices.Peer reviewe

    Avoiding gauge ambiguities in cavity quantum electrodynamics

    Get PDF
    DMR was supported by the UK EPSRC Grant No. EP/L015110/1. EMG acknowledges support from the Royal Society of Edinburgh and Scottish Government and UK EPSRC Grant No. EP/T007214/1. NW wishes to acknowledge financial support from UK EPSRC Grant No. EP/R513222/1 and EP/R030413/1.Systems of interacting charges and fields are ubiquitous in physics. Recently, it has been shown that Hamiltonians derived using different gauges can yield different physical results when matter degrees of freedom are truncated to a few low-lying energy eigenstates. This effect is particularly prominent in the ultra-strong coupling regime. Such ambiguities arise because transformations reshuffle the partition between light and matter degrees of freedom and so level truncation is a gauge dependent approximation. To avoid this gauge ambiguity, we redefine the electromagnetic fields in terms of potentials for which the resulting canonical momenta and Hamiltonian are explicitly unchanged by the gauge choice of this theory. Instead the light/matter partition is assigned by the intuitive choice of separating an electric field between displacement and polarisation contributions. This approach is an attractive choice in typical cavity quantum electrodynamics situations.Publisher PDFPeer reviewe

    Phonon-Induced Rabi-Frequency Renormalization of Optically Driven Single InGaAs/GaAs Quantum Dots

    Get PDF
    The authors thank the EPSRC (U.K.) EP/G001642, and the QIPIRC U.K. for financial support. A. N. is supported by the EPSRC and B.W. L. by the Royal Society.We study optically driven Rabi rotations of a quantum dot exciton transition between 5 and 50 K, and for pulse areas of up to 14 pi. In a high driving field regime, the decay of the Rabi rotations is nonmonotonic, and the period decreases with pulse area and increases with temperature. By comparing the experiments to a weak-coupling model of the exciton-phonon interaction, we demonstrate that the observed renormalization of the Rabi frequency is induced by fluctuations in the bath of longitudinal acoustic phonons, an effect that is a phonon analogy of the Lamb shift.Peer reviewe

    Exact quantum dynamics in structured environments

    Get PDF
    Funding: DG and DK acknowledge studentship funding from EPSRC under grant no. EP/L015110//1. AS acknowledges a studentship from EPSRC under grant no. EP/L505079/1. J.I.-S. acknowledges support from the Royal Commission for the Exhibition of 1851. AN acknowledges funding from EPSRC under grant no. EP/N008154/1.The dynamics of a wide range of technologically important quantum systems are dominated by their interaction with just a few environmental modes. Such highly structured environments give rise to long-lived bath correlations that induce complex dynamics which are very difficult to simulate. These difficulties are further aggravated when spatial correlations between different parts of the system are important. By modeling the dynamics of a pair of two-level quantum systems in a common, structured, environment we show that a recently developed general purpose numerical approach, the time-evolving matrix product operator, is capable of accurate simulation under exactly these conditions. We find that tuning the separation to match the wavelength of the dominant environmental modes can drastically modify the system dynamics. To further explore this behavior, we show that the full dynamics of the bath can be calculated directly from those of the system, thus allowing us to develop intuition for the complex dynamics observed.Publisher PDFPeer reviewe

    Quantum capacitance and charge sensing of a superconducting double dot

    Get PDF
    We acknowledge the support from Hitachi Cambridge Laboratory and EPSRC Grant No. EP/K027018/1. A.J.F. is supported by a Hitachi Research fellowship.We study the energetics of a superconducting double dot, by measuring both the quantum capacitance of the device and the response of a nearby charge sensor. We observe different behaviour for odd and even charge states and describe this with a model based on the competition between the charging energy and the superconducting gap. We also find that, at finite temperatures, thermodynamic considerations have a significant effect on the charge stability diagram.PostprintPeer reviewe

    Efficient non-Markovian quantum dynamics using time-evolving matrix product operators

    Get PDF
    AS acknowledges a studentship from EPSRC (EP/L505079/1). PK acknowledges support from EPSRC (EP/M010910/1). DK acknowledges support from the EPSRC CM-CDT (EP/L015110/1). JK acknowledges support from EPSRC programs "TOPNES" (EP/I031014/1) and "Hybrid Polaritonics" (EP/M025330/1). BWL acknowledges support from EPSRC (EP/K025562/1).In order to model realistic quantum devices it is necessary to simulate quantum systems strongly coupled to their environment. To date, most understanding of open quantum systems is restricted either to weak system-bath couplings or to special cases where specific numerical techniques become effective. Here we present a general and yet exact numerical approach that efficiently describes the time evolution of a quantum system coupled to a non-Markovian harmonic environment. Our method relies on expressing the system state and its propagator as a matrix product state and operator, respectively, and using a singular value decomposition to compress the description of the state as time evolves. We demonstrate the power and flexibility of our approach by numerically identifying the localisation transition of the Ohmic spin-boson model, and considering a model with widely separated environmental timescales arising for a pair of spins embedded in a common environment.Publisher PDFPeer reviewe
    corecore