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Designing spin-channel geometries for entanglement distribution
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We investigate different geometries of spin-1/2 nitrogen impurity channels for distributing entanglement
between pairs of remote nitrogen vacancy centers (NVs) in diamond. To go beyond the system size limits
imposed by directly solving the master equation, we implement a matrix product operator method to describe
the open system dynamics. In so doing, we provide an early demonstration of how the time-evolving block
decimation algorithm can be used for answering a problem related to a real physical system that could not be
accessed by other methods. For a fixed NV separation there is an interplay between incoherent impurity spin
decay and coherent entanglement transfer: Long-transfer-time, few-spin systems experience strong dephasing
that can be overcome by increasing the number of spins in the channel. We examine how missing spins and
disorder in the coupling strengths affect the dynamics, finding that in some regimes a spin ladder is a more
effective conduit for information than a single-spin chain.

DOI: 10.1103/PhysRevA.94.032302

I. INTRODUCTION

Nitrogen vacancy centers (NVs) in diamond provide one
of the most promising routes for interfacing optics with solid
state systems [1] because of their long electron and nuclear
spin decoherence times that persist to room temperature [2,3].
However, using coupled NVs in a quantum register requires
individual optical addressing, and this sets a minimum spacing
that means their direct coupling is almost negligible. Such scal-
ing issues could be overcome by using a dark spin channel [4].
Direct numerical simulations of such multispin systems are
severely limited by the problem of an exponential growth
of Hilbert space with system size. However, we show that
sophisticated numerical techniques based on matrix product
state (MPS) methods are able to overcome such limitations,
allowing us to perform numerically exact simulations of this
quasi-one-dimensional system with up to ∼27 spins. MPS
methods have proved very successful at studying paradigmatic
quantum models such as the transverse field Ising model [5],
the XXZ model [6], and the Bose-Hubbard model [7]. Instead
here we focus on implementing these techniques to simulate
a real device allowing us to compare different geometries of
spin channel, so aiding the design of such systems.

Fabrication of nitrogen-doped diamond spin-wire structures
can be achieved through nitrogen ion implantation followed
by an annealing stage to convert some of the nitrogen
impurities to NVs [8,9]. The conversion process is not perfectly
efficient, but the unconverted impurities can be used as a
spin channel [10]. NVs are amenable to precise measurement
and manipulation [11], which has led to an experimentally
realizable set of universal quantum operations [12,13]. There
is a large degree of flexibility in the design of the dark
nitrogen spin-channel geometry that can be used to connect
remote NVs. It is then of critical importance to learn how
resilient different geometries are to missing impurities and to
a distribution of couplings due to imprecise positioning.

Initially it was suggested that spin-1/2 chains provide an
ideal method for quantum state transfer (QST) [4,14–16], and
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a variety of geometries were explored [17–19]. However, the
losses generated by the coupling to the environment of such
spin channels mean that it is impractical to use them to directly
transfer quantum states between neighboring NVs [20]. There
are ways to circumvent this drawback [21]; for example, it is
possible for two distant systems to be entangled via a separable
ancilla [22,23], and this has been achieved experimentally
using single photons [24] and Gaussian beams [25,26].

We focus here on an alternative option of using entan-
glement distillation [27–29]: A large ensemble of weakly
entangled pairs are distributed and through local operations
and classical communication are refined into a small ensemble
of highly entangled pairs, and then teleportation can be used for
state transfer. One way to remotely entangle NVs is to erase the
path information of their emitted photons, and this was recently
exploited to perform a loophole-free Bell test [30]. However,
the production rate for this process is currently limited to one
entangled pair per hour, and so investigating alternatives is
important. In particular, distribution of entanglement along
simple spin chains is a promising option [20,31–33] and has
very recently been extended to dual-rail configurations [34,35].

In this paper we show how an intelligent choice of the
geometry of a spin channel can help to overcome limitations
in channel manufacturing processes, which may leave certain
spins missing and/or lead to disorder in spin-spin coupling
strengths. Obtaining the dynamics of excitations in these
spin channels allows us to assess how such imperfections
affect different geometries. A schematic drawing of the two
configurations that we compare is shown in Fig. 1. These are
the chain in which there is a single route connecting adjacent
NVs and the ladder, which provides multiple routes between
the centers.

II. MODEL

Our model is illustrated schematically, also in Fig. 1. The
NV spins are at sites i = 0 and i = N + 1 while the spin
channel that connects them covers sites i = 1 to N . The
Hamiltonian can then be written as a sum of three terms
corresponding to the NV, dark spin-channel, and NV-channel
interaction, reading as

H = HNV + HC + HNV-C. (1)
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FIG. 1. Schematic diagram of N -site nitrogen impurity chain and
ladder channels connecting left and right NVs with the indicated
couplings. An ancilla spin is initially entangled with the left NV.
Intrachannel couplings are of strength κ , and the NV-channel coupling
strength is g. The index for the ladder spins (and operators) has both
a site label i ∈ {1 . . . N} and a top or bottom label as indicated.

The NV Hamiltonian is

HNV = ε

2

(
σ z

0 + σ z
N+1

)
, (2)

where two of the three levels of the ground manifold of the NV
can be isolated by driving the system with a microwave field, as
described in Ref. [12]. The resulting qubit splitting is described
by a Pauli spin-1/2 operator, σ z, and the splitting ε can be set
by choosing an appropriate microwave field detuning. The
nitrogen defects in the channel each have electron spin 1/2
and interact through dipolar coupling. However, again through
suitable microwave driving, this interaction can be transformed
into an XX form [12]. The Hamiltonian HC = HV + HH can
then be split into vertical and horizontal components:

HV =
N∑

i=1

αi(σ
+
i,Bσ−

i,T + H.c.), (3a)

HH =
N−1∑
i=1

∑
j∈{B,T }

κi,j (σ+
i,j σ

−
i+1,j + H.c.), (3b)

with spin raising and lowering operators, σ±. B and T refer
to spins located on the bottom and top rows of the ladder,
respectively, as illustrated in Fig. 1. The vertical and horizontal
intrachannel couplings are of strength α and κ , respectively.
Finally, the NV-channel interaction is given by

HNV-C =
∑

j∈{B,T }
g0,j (σ+

0 σ−
1,j + H.c.)

+gN+1,j (σ+
N+1σ

−
N,j + H.c.), (4)

where g represent the coupling strengths between the NV and
the impurity channel. This provides the full description for a
ladder of spins; to treat a chain we simply omit HV and truncate
the summation over j in HH and HNV-C.

In our simulations the leftmost NV is prepared in
a maximally entangled state with an ancilla: |�−〉 =

1√
2
(|↑↓〉 − |↓↑〉), while all channel spins and the rightmost

NV are initialized with spin down. The system is then
propagated in time and the entanglement of formation, E [36]
of the of the ancilla and final NV, is calculated from their

reduced density matrix ρR:

E = h

[
1 +

√
1 − C(ρR)2

2

]
, (5)

where

h(θ ) = θ log2 θ − (1 − θ ) log2(1 − θ ), (6)

C(ρR) = max(0,λ1 − λ2 − λ3 − λ4). (7)

Here C(ρR) is the concurrence and λi are the eigen-
values of

√
ρRρ̃R in descending order, with ρ̃R =

(σy ⊗ σy)ρ∗
R(σy ⊗ σy). We use the entanglement of formation

as our measure because, for this system, it is a simply cal-
culated entanglement monotone bounded by 0 (disentangled
state) and 1 (maximally entangled state). The value of E

corresponds to the number of shared Bell states per copy
required to produce a particular ensemble state using only
local operations and classical communication [37,38]. Our
goal is then to maximize E to allow for some entanglement
distillation process to be carried out to purify the entanglement
as efficiently as possible [27–29].

Dissipative processes play an essential role in the dynamics
of transport through this type of system. To model this
we include Markovian decay processes to represent the
environment of the surrounding crystal [20]:

dρ(t)

dt
= −i[H,ρ] + γNV

(
D

[
σx

0

] + D
[
σx

N+1

])
ρ

+γC

N∑
i=1

∑
j∈{B,T }

D
[
σx

i,j

]
ρ, (8)

where D[X]ρ = XρX† − 1
2 {X†X,ρ} is the usual Lindblad

dissipator. The Lindblad operators describe the dissipation
with associated decay rates γ for all NV and channel spins
(but not the ancilla) and ρ is the density matrix of the
full ancilla-NV-impurity system. It is possible to realize our
Hamiltonian experimentally via steps that include a basis
rotation (x,y,z) → (z, − y,x) (a full derivation of the mapping
can be found in the Supplemental Material of Ref. [20]).
Decoherence times of spin qubits can be characterized by
two time scales, the spin relaxation time T1 and the phase
decoherence time T2. The basis rotation means modeling of
physical spin-flip (phase-flip) noise, characterized by a T1 (T2)
coherence lifetime, requires σ z (σx) Lindblad operators. It has
been shown, for these spin-channel entanglement distribution
systems, that T2 processes are the more destructive type
of noise [20], and so the equation above only contains σx

Lindblad terms, which correspond to T2 dephasing.
To accurately simulate the full dissipative dynamics of

the system it is necessary to include effects beyond the
single-excitation subspace and work with the full Hilbert
space of our Hamiltonian. We make use of two computation
methods: (1) for small systems, direct solution of the set of
differential equations in Eq. (8) [39] and (2) for larger systems
a matrix product operator (MPO) formulation [40,41]. For
N < 5 a powerful desktop machine can satisfy the memory
requirements of the direct solution. For N � 5 the MPO-
based implementation overcomes the exponential memory
requirements of the problem, but for N < 5 this is slower
than direct solution.
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A general state of the ladder (or chain), including the NVs
and ancilla, can be written as

ρ =
∑

{n0,...,nN+1}
Dn0,...,nN+1σ

n0
0 ⊗ · · · ⊗ σ

nN+1
N+1 , (9)

where the complete basis of 16 matrices describing the density
matrix at each site (consisting of two physical spins for the
ladder) {σi} are a generalization of the Pauli matrices to a two-
spin (four-level) system [42]. The rightmost NV is paired with
a dummy, noninteracting spin. So far this description of the
state is exact. The efficiency gain from using an MPO decom-
position of Eq. (9) comes from reexpressing the coefficients as

Dn0,...nN+1 =
∑
{νk}

�[0]n0
ν0

λ[0]
ν0

�[1]n1
ν0ν1

λ[1]
ν1

× . . .

×�[N]nN

νN−1νN
λ[N+1]

νN
�[N+1]nN+1

νN
. (10)

This procedure is equivalent to performing a singular value
decomposition at each site, with the {λ[i]} vectors containing
the singular values [41,43]. Truncation of the bond dimension,
{νk}, then keeps only the most important singular values in the
description of the system, reducing the scaling with system
size to be polynominal. To check convergence we increase
the number of singular values retained until the dynamics are
insensitive to adding more. An adaptive scheme is employed
to increase the bond dimension as the simulation proceeds.
An upper truncation limit of bond dimension νk = 30 and
minimum time step of 10 ns converged the dynamics of the
longest channels studied to � 1% accuracy. Time evolution
of our MPO relies on the time-evolving block decimation
(TEBD) method [44,45] extended for dealing with density
matrices [43,46]. The code used here is modified from already
tested TEBD MPO code [5,47].

To understand the effects of both the coherent evolution
and lossy dynamics we begin by studying our model when all
the couplings are uniform, i.e., by setting g0,j = gN+1,j = g

and αi = κi,j = κ in Eq. (3). To maximize transfer speed we
choose g = κ = μ0g

2
eμ

2
B/8πr3, where ge is the electron g-

factor and r denotes the spin separation distance. In this strong
coupling regime the maximum entanglement of formation is
largely independent of ε; this is in contrast to the weak coupling
g � κ limit [20] where it is necessary to target a particular
channel eigenmode. We are thus free to choose ε = 0. We also
fix the NV decay rate γNV = 1/T2 = 0.1 kHz [2].

III. RESULTS

In Fig. 2 we show the dynamics of E while increasing the
number of spins in the channel with a fixed NV separation
of 40 nm [48,49]. We limit ourselves to a maximum of
N = 12, since this is approaching the limit of our numerical
capability. For an N = 12 ladder we are already simulating
exact dynamics for 27 spins, a Hilbert space dimension of more
than 108 described by a quasi-one-dimensional four-level spin
system; calculating converged dynamics of longer channels
requires smaller time steps and increased bond dimension.

The fidelity of transfer is determined by the competition
between the coherent transfer rate and the loss of information
to the environment. As N gets larger, the spins get closer
and g and κ increase; as can be seen in Fig. 2(a) and 2(b), this

(a)

(b)

(c) (d)

FIG. 2. Dynamics of the entanglement of formation, E, for
increasing number of spins in the channel N (right to left) in (a)
chains and (b) ladders between NVs spaced 40 nm apart, and loss rate
γC = 2 kHz. The lower panels show the maximum E, for different
γC values (increasing from top to bottom) as a function of N for (c)
chains and (d) ladders. The N that maximizes EMax is circled.

expedites the entanglement transfer. Competing with this effect
is the fact that as N increases the number of loss channels also
increases. For the value of γC = 2 kHz in Figs. 2(a) and 2(b),
the long transfer time for smaller numbers of spins in the
channel is clearly seen to be the limiting factor, rather than the
effect of fewer spins undergoing decay. However, as can be
seen in Figs. 2(c) and 2(d) the optimal N becomes larger for
increasing γC; when γC is small the system is able to remain
efficient even with a slow transfer rate, but as γC increases the
faster transfer through a longer channel means the decay is
less important.

The value of E for ladders in Figs. 2(b) and 2(d) is always
lower than for chains of the same length. This is because the
ladder is constructed from more spins than the chain and so
always has a larger total effective decay rate, but the extra spins
in the ladder allow faster transfer of entanglement.

A. Missing spins

Let us next investigate the possibility that spins may be
missing from a manufactured channel. In what follows we
will fix the value of γC = 2 kHz as this will allow us to clearly
show the physics of interest in an experimentally motivated pa-
rameter regime [50,51]. As seen in Fig. 2, at this decay rate the
coupling strength associated with N = 12 provides the maxi-
mum fidelity of entanglement distribution, so we now fix the
interspin separation at r = 40/13 nm and hence g = κ ∼ 0.9.
Therefore the total length of the channel is now not fixed but
increases as we add spins to it.

It is immediately obvious that a single spin missing from
a nearest-neighbor interacting chain constitutes a catastrophic
break rendering entanglement distribution impossible, but as
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(a)

(b)

FIG. 3. (a) Dynamics of E for various impurity ladder configu-
rations with missing spins. These are schematically illustrated in the
inset. The crosses denote missing spins. (b) The ratio of the values
of 〈EMax〉 for the ladder and chain as a function of the probability
for each spin to be missing P for a variety of channel lengths N .
The inset shows the actual values of 〈EMax〉 with increasing channel
length from top to bottom.

can be seen from the example results for various missing spin
configurations in Fig. 3(a), this is not the case for a ladder. To
investigate this further we look at how the average efficiency
of a channel decays as the probability that a given spin is
missing, P , increases. We calculate the average maximum
entanglement of formation through

〈EMax〉(P ) =
∑

c

P mc (1 − P )M−mcEMax,c, (11)

where the summation is over all possible missing spin
configurations, M is the total number of spins, and mc is the
number of missing spins in the configuration c.

The value of 〈EMax〉 for channels of length N = 3 to 6 can
be seen inset to Fig. 3(b). The dependence is intuitive: a higher
P causes a reduction in 〈EMax〉 for both chain and ladder.
To see more clearly which channel type performs best, the
main panel of Fig. 3(b) shows the ladder:chain ratio of 〈EMax〉
for each N . It is clear a ladder is more robust to missing
spins, but because there are more possible spins to lose in a
ladder, it is not until a relatively large value of P that using a
ladder becomes beneficial. This is perhaps a surprising result;
simply because there are more connected network routes for
entanglement transfer in a ladder does not necessarily mean it
will work better. As the channel length is increased, however,
the trend (except for in the very short N = 3 case) is that the
ladder starts to outperform the chain at a lower value of P . We
expect this trend to continue to larger values of N ; in a long
chain even a very small value of P will cause catastrophic
failures to dominate 〈EMax〉, but we cannot verify this since
we are constrained by computational resources: The number of
configurations which need to be simulated grows very quickly
with the length of the channel.

(a)

(b)

FIG. 4. (a) Disorder averaged EMax,σ for randomly assigned
intrachannel bond strengths from a log-normal distribution with
standard deviation σ in units of the ideal coupling κ0. The error bars
are calculated using the standard error of the mean. (b) The difference
between the ideal σ = 0 case and its disordered equivalent. Each
point was averaged over k disorder realizations where k = 12 000 for
the N = 3 chain, k = 10 000 for the N = 4 chain, k = 4000 for the
N = 3 ladder, and k = 600 for the N = 4 ladder.

B. Coupling disorder

Placing spins in a chain or ladder configuration naturally
has some inherent fabrication imprecision. This has the direct
consequence that the couplings between spins will take on
some distribution of values. We investigate this effect by
introducing random couplings about the ideal κ0 = κ(r =
40/13) value. We need to choose a distribution which vanishes
at κ = 0 and has a long tail at large κ to approximately describe
the effects of randomly placing spins around some mean
value; with this in mind we use a log-normal distribution [52].
The number of disorder realizations necessary for numerics
to converge to good accuracy means that we are limited to
studying channels with N = 3 and 4.

In Fig. 4 we show the disorder averaged maximum
entanglement of formation, EMax,σ as a function of the standard
deviation, σ , of the distribution. We find that a broader
distribution leads to a lower EMax,σ for both chain and ladder,
but in this case the chain always outperforms the ladder for
all tested σ . As can be seen in Fig. 4(b), the deviation from a
perfect channel of a given length is very similar for both chains
and ladders. It is also clear from these results that although a
longer channel severely limits the distribution fidelity of the
ladder, it also reduces the relative overall effect of the disorder.

IV. CONCLUSION

In conclusion, using matrix product operators to perform
numerically exact quantum simulations in much larger Hilbert
spaces than is feasible for direct solution has enabled us
to study the dynamics of many-spin channels in an open
environment. The types of numerical techniques used here
are applicable to studying the behavior of a wide variety
of similar systems. For example it could be applied to
conduction in quasi-one-dimensional channels such as in
carbon nanotubes, polymers, or DNA [53,54]. Generalizations
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to higher dimensions are possible through projected entangled
pair states [55].

We have been able analyze the benefits and drawbacks
of using different geometries of spin channels to distribute
entanglement between two separated NVs. We find that in the
ideal case, with no manufacturing imperfections, using simple
chains is optimal. When spins are missing ladders perform
better and with intrachannel disorder both geometries scale
similarly. Extrapolating our results we believe that a study
combining both of these should find that ladders outperform
chains after a similar threshold as shown for our missing
spin results. Unfortunately, numerical limitations make it
impossible to verify this directly.

An interesting next step would be to examine what happens
when there are interactions beyond nearest-neighbor coupling.
While this should make both channels more robust against
defects it would also allow chains to continue to function when

a spin is missing, causing them to be more robust to this kind of
defect. Ladders and chains both have strengths and drawbacks
when used for entanglement distribution. The particular kinds
and scales of dissipation and disorder determine which is the
best geometry to use.

ACKNOWLEDGMENTS

We thank J. Keeling for providing the initial MPS code
used in this study and for suggesting that it could be used for
modeling spin ladders. We thank E. M. Gauger for reading
the manuscript and useful comments. E.K.L. acknowledges
support from EPSRC (EP/G03673X/1). P.G.K. acknowledges
support from EPSRC grant EP/M010910/1.

The research data supporting this publication can
be accessed at doi:10.17630/9f4a250d-16e6-4bb3-9e84-
ec2d87635387.

[1] W. B. Gao, A. Imamoglu, H. Bernien, and R. Hanson, Nat.
Photon 9, 363 (2015).

[2] L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky,
and V. Jacques, Rep. Prog. Phys. 77, 056503 (2014).

[3] G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham,
R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler,
V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, Nat.
Mater. 8, 383 (2009).

[4] N. Y. Yao, L. Jiang, A. V. Gorshkov, Z.-X. Gong, A. Zhai, L.-M.
Duan, and M. D. Lukin, Phys. Rev. Lett. 106, 040505 (2011).

[5] C. Joshi, F. Nissen, and J. Keeling, Phys. Rev. A 88, 063835
(2013).

[6] Z. Cai and T. Barthel, Phys. Rev. Lett. 111, 150403 (2013).
[7] L. Bonnes, D. Charrier, and A. M. Läuchli, Phys. Rev. A 90,
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