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We study the energetics of a superconducting double dot, by measuring both the

quantum capacitance of the device and the response of a nearby charge sensor. We

observe different behaviour for odd and even charge states and describe this with a

model based on the competition between the charging energy and the superconduct-

ing gap. We also find that, at finite temperatures, thermodynamic considerations

have a significant effect on the charge stability diagram.
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The ability to make small capacitance devices in which the electrostatic energy per elec-

tron is larger than the thermal energy has allowed a family of ‘single electron devices’ to

be made and investigated, including single electron transistors (SETs), semiconductor dou-

ble quantum dots, and superconducting SETs. By using capacitively coupled gate voltages

to manipulate the charge occupancy, they have been exploited as, amongst other things,

charge sensors1–3, probes of chemical potential4, charge qubits5,6 and spin qubits7. The key

to controlling these devices is an understanding of the energetics of the charge states as a

function of the applied gate voltages8.

A superconducting double dot (SDD) comprises two superconducting islands coupled by

a Josephson junction, with each island connected to a normal metal lead by an NIS junction

(Figs 2(a) and 2(b)). It is therefore similar to a semiconductor double dot, but rather

than electrons, the SDD allows electrostatic manipulation of Cooper pairs and Bogoliubov

quasiparticles. In this Letter, we study the charge stability diagram of an SDD. We use

its quantum capacitance to probe the anticrossings between coherently coupled Cooper pair

charge states, and an independent superconducting charge sensor to directly measure the

charge occupancy of the device.

We start by describing the SDD theoretically, following the approaches of Tuominen9

and Lafarge10,11. Its behaviour is governed by the competition between four energy scales:

the superconducting gap (∆), the charging energies of the islands8 (ECR, ECL, ECM), the

temperature (kBT ) and the Josephson energy of the middle tunnel junction (EJ). We

calculate the Helmholtz free energy for different charge states of the device, F = U − TS,

where U is the internal energy of the system and S is the entropy. We label the charge states

(m,n) where m (n) is the total offset charge from an arbitrarily chosen even parity state on

the left (right) island. For even parity states the ground state is a Cooper pair condensate.

If, however, either m or n is odd, then the associated quasiparticle has a momentum degree

of freedom and so the quasiparticle states form a continuous band.

To find the internal energy of the device we solve the Hamiltonian for the system. Diago-

nal elements of the Hamiltonian are given by the sum of the electrostatic energy, UE, which

is found by treating the device as a network of capacitances8, and the energy cost of any

unpaired quasiparticles. States that are related by the transfer of one Cooper pair between

the islands are coupled by the matrix element −EJ/2
12,13. The Hamiltonian is therefore
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Ĥ =
∑
m,n

(UE + ∆(m mod 2 + n mod 2)) |m,n〉 〈m,n| −

∑
m,n even

EJ

2
(|m+ 2, n〉 〈m,n+ 2|+ |m,n+ 2〉 〈m+ 2, n|),

(1)

and the Josephson interaction therefore leads to an anticrossing of size EJ between states

coupled by the transfer of a Cooper pair, by analogy with a Cooper pair box13,14.

We now determine the contribution of the entropy to the free energy of quasiparticle

states, following the approach of Tuominen et al9. At low temperatures (kBT � ∆), and

in the case where a single quasiparticle is present on an island, the number of microstates

available is given by Neff ≈ 2
√

2πV D(εF )
√

∆kBT , where V is the island volume, D(ε) is the

single spin density of states in the normal state and εF is the Fermi energy. The entropy is

therefore also parity dependent, and we can now write the free energy of the system as

F (m,n) = UE(m,n) + ∆̃(m mod 2 + n mod 2) (2)

where ∆̃ = ∆ − kBT ln(Neff). The free energy of quasiparticle states decreases as tem-

perature increases, with the energy of two-quasiparticle states decreasing at twice the rate

of single-quasiparticle states.

We show the evolution of the calculated charge stability diagram with increasing ∆̃/EC

in Fig. 1, for an ideal device with no cross capacitance between V1(2) and island 2(1). We

use the Ambegaokar-Baratoff relationship between EJ and ∆, EJ = ∆h
8e2Rm

. For ∆̃/Ec = 0

the stability diagram is that of a metallic double dot (Fig. 1(a)). Increasing ∆̃/Ec has

two effects: the energy cost for quasiparticles increases, leading to charge states with odd

parity reducing in extent (Fig. 1(b)); and an anticrossing opens up between even parity

states. These are analogous to the anticrossings observed in semiconductor double dots15,

and similarly result in a change in ∂E/∂Vs, leading to a non-zero quantum capacitance close

to the anticrossing16.

When ∆̃/(Ec−EJ) > 1
2

then the energy cost of the doubly odd parity (1,1) state is high

enough that it is never the ground state (Fig. 1(c)). Instead, the ground state at V1 = 0,

V2 = 0 becomes the symmetric combination of the Cooper pair states, 1√
2
(|2, 0〉+ |0, 2〉). As

∆̃/Ec is increased still further (Fig. 1(d)), single quasiparticle states are also expelled from
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FIG. 1. Theoretical charge stability diagrams for (a) ∆̃ = 0, (b) ∆̃ = EC/4, (c) ∆̃ = EC/2 and

(d) ∆̃ = 3EC/2. Blue regions are Cooper pair states, purple regions have one quasiparticle present

and the orange region has one quasiparticle on each island. Dotted lines in (b) and (c) correspond

to anticrossings of the hybridised (2,0) and (0,2) levels.

the stability diagram, and it becomes 2e periodic. At V1 = 0, V2 = 0, the lowest two states

are the symmetric and antisymmetric Cooper pair states which form a two-level system with

energy separation EJ .

We now present measurements on an SDD. Our device (Figs 2(a), 2(b)) is made using

a standard three angle shadow mask process17. It consists of two Al superconducting is-

lands separated by an Al2O3 tunnel junction formed by in situ oxidation of the Al. They

are connected to normal metal (Al0.98Mn0.02) leads by similarly formed tunnel junctions.

Close to the SDD is a CPB, formed by a superconducting Al island tunnel coupled to a

superconducting Al lead. The two devices are fabricated in one set of depositions, with an

artefact of one of the SDD islands forming the CPB. In order to protect the CPB against

quasiparticle poisoning, it is chosen to be thinner (15 nm) than the lead (25 nm), resulting

in it having a larger superconducting gap18,19, and presenting a barrier to quasiparticles

from the lead20,21. Electrostatic gates are also defined, to allow voltages V1, V2 and Vc to

control the electrochemical potentials of the SDD and CPB. A fourth gate is not used in

these experiments.
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FIG. 2. The superconducting double dot and Cooper pair box. (a) False colour electron micrograph

of the device. The SDD is shown in blue, the CPB in green, and red regions are the electrostatic

gates. Metallic leads are yellow. Other features are artefacts of the multiple angle evaporation.

(b) Schematic of the experiment. The rf signal is incident on resonant inductors LSDD and LCPB.

Potentials V1, V2 and Vc are used to control the electrochemical potentials of the SDD and CPB.

(c) Phase response at fSDD as a function of V1 and V2 with Vc grounded, showing the quantum

capacitance of the SDD, and a smaller response due to the quantum capacitance of the CPB. The

line A → B shows the crossection used in Fig. 3. (d) Phase response at fCPB as a function of V1

and V2 with Vc grounded. Here the CPB dominates the response, and the signal from the SDD is

reduced.

We measure the complex impedances of the SDD and CPB mounted on the mixing

chamber of a dilution fridge (T = 30 mK) using rf reflectometry. Their leads are bonded

to separate lumped element inductors with resonant frequencies of fCPB = 298 MHz and

fSDD = 350 MHz (Fig. 2(b)), allowing the two components to be probed independently. A

carrier wave of power −105 dBm at one of the two resonant frequencies is incident upon

the resonators, and the reflected power amplified at 4 K and room temperature before being

demodulated to retrieve the phase and amplitude of the reflected signal.

We take care to minimize the nonequilibrium quasiparticle population generated by stray

radiation. The sample is mounted in a light-tight copper box, coated with carbon/carbide

loaded epoxy. We also surround the box with Eccosorb microwave absorbent material.

Coaxial cables to the sample box are attenuated at the 1 K and 30 mK stages of the dilution
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fridge. The gates are connected to twisted pairs with low-pass (fcutoff = 10 kHz) filters at

30 mK.

The charging energies of the two islands of the SDD are determined from Coulomb dia-

monds to be ≈ 275 µeV. We find the mean value of the superconducting gap for the islands

to be 225 µeV. We expect the thinner one to have a larger gap19, but cannot discriminate

between the two islands. The total resistance of the SDD is ≈ 1 MΩ.

In Figs 2(c) and 2(d) we show the phase response for the SDD (2(c)) and CPB (2(d))

as a function of V1 and V2, with Vc grounded. Two sets of features are visible in each case

and we ascribe both to the quantum capacitances of the two devices. The diagonal lines are

due to the quantum capacitance near the charge transitions of the Cooper pair box13 and

the other features are the result of the quantum capacitance of the SDD. We see the same

features in both plots, because the devices are capacitatively coupled; the visibility of the

feature associated with each device is enhanced when that device is probed directly.

In Figs 2(c) and 2(d) we are solely sensitive to the capacitance of the device, and hence see

only the quantum capacitance due to the anticrossings between even parity charge states

mediated by Cooper pair transfer between the islands. Because these anticrossings are

visible, the device must be in one of the two low charging energy regimes shown in Fig. 1(c)

and Fig. 1(d). However, we are not able to infer the presence or otherwise of quasiparticle

states from these measurements.

For the rest of this Letter, we use Vc to compensate for the action of V1 and V2 on the

charge sensor; either to hold it near an operating point (in charge sensing measurements) or

to hold it in a particular charge state, so that charge transitions in the CPB do not affect

the SDD. We first tune the charge sensor away from any transitions, and concentrate on the

response of the resonator coupled directly to the double dot.

In Fig. 3(a) and 3(b) we show measured phase along the line A → B in Fig. 2(d) as a

function of applied in-plane field, B, and temperature. In both cases, the capacitance is

suppressed, as the superconducting gap is decreased. Along with the data in 2(c) and 2(d)

and the doubling of the stability diagram period under large applied fields (B = 2 T), this

suggests that, for B = 0 and our base temperature of 30 mK, the energy scales of our device

are such that ∆̃/(Ec − EJ) > 1
2
, corresponding to the regime shown in either 1(c) or 1(d).

We now use the model described above to calculate the equilibrium thermal occupancy of

the different charge states along this cross-section as a function of magnetic field and temper-
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FIG. 3. Quantum capacitance. (a) Normalised device capacitance along A → B in Fig. 2(c) for

increasing temperature. (b) Normalised capacitance along the same line for increasing magnetic

field. In (a) and (b) Vc is used to compensate for the action of V1 and V2, and holds the CPB

in a single charge state. (c) and (d) Calculated normalised device capacitance weighted by state

occupancy for the temperatures (c) and magnetic fields (d) in (a) and (b). In (c), we assume an

base electron temperature of 75 mK, and therefore no curve is plotted for 30 mK.

ature, and hence the expected capacitance signal. We assume a base electron temperature of

75 mK. Two states contribute to the signal. The 1√
2
(|2, 0〉+ |0, 2〉) state has positive quan-

tum capacitance, whilst the 1√
2
(|2, 0〉−|0, 2〉) state has negative quantum capacitance of the

same magnitude. This higher lying state is never significantly occupied in our experiments.

The normalised expected signals are plotted in Figs 3(c) and 3(d). Increasing temperature

or increasing magnetic field will suppress ∆̃. However, we see a difference in the dependence

of the quantum capacitance signal on these two parameters; this is due to the increased

thermal occupancy of higher energy states in the case of increasing temperature. Our model

is in qualitative agreement with our measurements. However, because the measurement is

heavily averaged, broadening of the quantum capacitance due to 1/f charge noise from a

background of two level fluctuators is also present in our experimental results, and is not

included in our theory.

Our quamtum capacitance data show we are in one of the two regimes shown in Fig. 1(c)

and Fig. 1(d), in which the anticrossings are visible. To verify our conclusions, we now
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describe charge sensing measurements on the double dot. The charge state of a single

electron device can be measured directly using a charge sensor, which has an impedance

highly sensitive to the local charge distribution. For some charge sensors such as SETs2,3,

the real part of the impedance is measured. Alternatively, charge sensors can rely on a

change to the imaginary part of their impedance, by either a capacitance22 or inductance23

sensitive to the electrostatic environment. This approach offers a way to beat the shot

noise limit for dissipative charge sensors24 and reduces back action on the system to be

measured25,26.

In Fig. 4(a) we show the phase response of LCPB as a function of V1 and V2. We observe a

hexagonal stability diagram, characteristic of electrostatically coupled double dots, and by

comparing the gate periodicity to the normal state stability diagram measured at B ≈ 2 T

we find that it is 2e periodic. We also observe here the quantum capacitance of the SDD at

the inter-island charge transitions, as in Fig. 2(d).

In Fig. 4(b) we show the phase along the line A → B in Fig. 4(a) for applied magnetic

field values between 0 mT and 100 mT. In this part of the stability digram, the charge sensor

is tuned such that the (0,0) and (0,2) give similar signals in order to maximise the contrast

with the (0,1) state, which is observed between the (0,0) and (0,2) states. This confirms

that we are the regime shown in Fig. 1(c) at B = 0. As B increases, ∆̃ decreases, and the

odd parity (0,1) state increases in size, although most of the stability diagram is still even

parity. At 150 mT and higher, the periodic behaviour of the CPB is suppressed, and it can

no longer act as a charge sensor.

In conclusion, we have theoretically and experimentally studied the charge stability dia-

gram of a superconducting double dot. We find that the behaviour of the SDD depends on

the competition between the charging energies and the gap, and we note that the ground

state of the system can be tailored to include both single and double quasiparticle states.

A device with such states could be used as an electrostatic Cooper pair splitter which, in

contrast to previous work27–29, would retain the split pair. Alternatively, if the splitting is

driven by incident radiation it may be usable as a tunable detector for microwave light16.
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FIG. 4. Charge sensing. (a) Phase response at fCPB with Vc acting to hold the CPB close to a

charge transition, and B = 0. A honeycomb charge stability pattern is observed, with a background

phase gradient due to the imperfect compensation of the action of V1 and V2 by Vc. (b) Normalised

phase response at fCPB along A → B, for increasing magnetic fields. As magnetic field increases,

the central plateau corresponding to the (0,1) charge cell enlarges.
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