1,601 research outputs found

    National and International Volunteerism Among Volunteers in the United States, 2005

    Get PDF
    National and International Volunteerism Among Volunteers in the United States, 200

    Di-tert-butyl cyclo­hex-2-ene-1,4-diyl dicarbonate

    Get PDF
    In the title mol­ecule, C16H26O6, the central cyclo­hexene ring is in a half-chair conformation. The carbonyl groups are in a trans arrangement with respect to each other and the dihedral angle between the mean planes of the carbonate groups is 10.8 (2)°

    2,5-Dimethyl­hexane-2,5-diyl bis­(4-nitro­phen­yl) dicarbonate

    Get PDF
    The title structure, C22H24N2O10, contains two independent centrosymmetric mol­ecules. The only significant difference between the mol­ecules is the dihedral angle between the unique carbonate group (–O—CO2–) and the benzene ring, the values being 77.35 (8) and 66.42 (8)°. The crystal structure is stabilized by weak inter­molecular C—H⋯O hydrogen bonds

    Observation of photo-thermal feed-back in a stable dual-carrier optical spring

    Get PDF
    We report on the observation of photo-thermal feed-back in a stable dual-carrier optical spring. The optical spring is realized in a 7 cm Fabry-Perot cavity comprised of a suspended 0.4 g small end mirror and a heavy input coupler, illuminated by two optical fields. The frequency, damping and stability of the optical spring resonance can be tuned by adjusting the power and detuning of the two optical fields, allowing for a precise measurement of the absorption-induced photo-thermal feedback. The magnitude and frequency dependence of the observed photo-thermal effect are consistent with predicted corrections due to transverse thermal diffusion and coating structure. While the observed photo-thermal feed-back tends to destabilize the optical spring, we also propose a small coating modification that would change the sign of the effect, making a single-carrier stable optical spring possible

    Analysis of the mtDNA insertion site on chromosome 9L in maize inbreds using fluorescence in situ hybridization

    Get PDF
    Abstract only availableAlmost all eukaryotic nuclear genomes show evidence of organellar DNA insertions originating from mitochondrial DNA (mtDNA) and chloroplast DNA (cpDNA). While the precise mechanisms of incorporation remain unknown, the phenomenon is frequent and ongoing in many species. In Zea mays, mtDNA insertions differ among inbred lines. A very large mtDNA insertion is found near the centromere of the long arm of chromosome 9 in the B73 inbred. This insertion contains the majority of the mitochondrial genome, while a similarly positioned insertion in the Mo17 inbred line is much smaller. We used recombinant inbred lines from the intermated B73 x Mo17 (IBM) population to determine if the insertions are indeed at the same position. We selected lines with recombination in this region of chromosome 9L. Using two mtDNA probes present in the insertions in both B73 and Mo17, we applied a chromosome painting technique called fluorescence in situ hybridization (FISH) to root-tip metaphase chromosomes and looked for the presence of the mtDNA site on chromosome 9L in the selected IBM lines. If the mtDNA insertion sites in B73 and Mo17 are at different locations, then at least one of the recombinant IBM lines should not display a mtDNA insertion at the chromosome 9 location. However, all of the recombinant IBM lines examined displayed the mtDNA insertion site on chromosome 9L. This indicates that the Mo17 and B73 insertions likely occupy the same region on the chromosome. Furthermore, this suggests that the large mtDNA insertion occurred recently in B73 at a pre-existing site present in both B73 and Mo17.NSF-REU Program in Biological Sciences & Biochemistr

    (1S,2S,4R)-7-tert-But­oxy­bicyclo­[2.2.1]hept-5-en-2-yl (2S)-2-(6-meth­oxy­naphthalen-2-yl)propano­ate

    Get PDF
    In the title mol­ecule, C25H30O4, the napthalene ring system is slightly bowed, with a dihedral angle of 4.37 (13)° between the two benzene rings

    Mitochondrial DNA insertion into nuclear chromosomes of maize

    Get PDF
    Abstract only availableEvery mitochondrion contains its own DNA separate from the nucleus. Over evolutionary time, most of the mitochondrial genes have moved to the nucleus so that now mitochondria require nuclear DNA to function. This type of transfer is an apparently ongoing process based on our observations that large pieces of the mitochondrial genome have been transferred to the nucleus. The focus of this study was to find the locations of mitochondrial DNA (mtDNA) on nuclear chromosomes in the B73 line of maize and compare these locations to other lines, using fluorescence in situ hybridization (FISH). First, cosmids previously made from a normal mtDNA genotype (NB) were maxi-prepped and then direct labeled with fluorescent tags. Next we prepared slides of B73 root tips and hybridized the labeled cosmids as well as marker probes to the cells. After hybridization, the slides were viewed and chromosome spread pictures were taken showing the location of the cosmids on the chromosomes. This process was then performed on root tip chromosomes from the Mo17, Black Mexican Sweet (BMS), and B37 lines. Twelve cosmids, representing about 71% of the mitochondrial genome, were examined and 8 different nuclear insertion sites were identified. These dispersed locations were predominantly near centromeres or telomeres on chromosomes 2 and 9. These new findings will make understanding the B73 nuclear genome sequence easier because now researchers will know what to expect at these locations and provide new information about the mechanism of mitochondrial genome transfer to the nucleus.NSF-REU Biology & Biochemistr

    Tracing differences in iron supply to the Mid-Atlantic Ridge valley between hydrothermal vent sites: implications for the addition of iron to the deep ocean

    Get PDF
    Supply of iron (Fe) to the surface ocean supports primary productivity, and while hydrothermal input of Fe to the deep ocean is known to be extensive it remains poorly constrained. Global estimates of hydrothermal Fe supply rely on using dissolved Fe (dFe) to excess He (xs3He) ratios to upscale fluxes, but observational constraints on dFe/xs3He may be sensitive to assumptions linked to sampling and interpolation. We examined the variability in dFe/xs3He using two methods of estimation, for four vent sites with different geochemistry along the Mid-Atlantic Ridge. At both Rainbow and TAG, the plume was sampled repeatedly and the range of dFe/xs3He was 4 to 63 and 4 to 87 nmol:fmol, respectively, primarily due to differences in plume age. To account for background xs3He and shifting plume position, we calibrated He values using contemporaneous dissolved Mn (dMn). Applying this approach more widely, we found dFe/xs3He ratios of 12, 4–8, 4–44, and 4–86 nmol fmol−1 for the Menez Gwen, Lucky Strike, Rainbow, and TAG hydrothermal vent sites, respectively. Differences in plume dFe/xs3He across sites were not simply related to the vent endmember Fe and He fluxes. Within 40 km of the vents, the dFe/xs3He ratios decreased to 3–38 nmol fmol−1, due to the precipitation and subsequent settling of particulates. The ratio of colloidal Fe to dFe was consistently higher (0.67–0.97) than the deep N. Atlantic (0.5) throughout both the TAG and Rainbow plumes, indicative of Fe exchange between dissolved and particulate phases. Our comparison of TAG and Rainbow shows there is a limit to the amount of hydrothermal Fe released from vents that can form colloids in the rising plume. Higher particle loading will enhance the longevity of the Rainbow hydrothermal plume within the deep ocean assuming particles undergo continual dissolution/disaggregation. Future studies examining the length of plume pathways required to escape the ridge valley will be important in determining Fe supply from slow spreading mid-ocean ridges to the deep ocean, along with the frequency of ultramafic sites such as Rainbow. Resolving the ridge valley bathymetry and accounting for variability in vent sources in global biogeochemical models will be key to further constraining the hydrothermal Fe flux.</p

    Tracing differences in iron supply to the Mid-Atlantic Ridge valley between hydrothermal vent sites: implications for the addition of iron to the deep ocean

    Get PDF
    Supply of iron (Fe) to the surface ocean supports primary productivity, and while hydrothermal input of Fe to the deep ocean is known to be extensive it remains poorly constrained. Global estimates of hydrothermal Fe supply rely on using dissolved Fe (dFe) to excess He (xs³He) ratios to upscale fluxes, but observational constraints on dFe/xs³He may be sensitive to assumptions linked to sampling and interpolation. We examined the variability in dFe/xs³He using two methods of estimation, for four vent sites with different geochemistry along the Mid-Atlantic Ridge. At both Rainbow and TAG, the plume was sampled repeatedly and the range of dFe/xs³He was 4 to 63 and 4 to 87 nmol:fmol, respectively, primarily due to differences in plume age. To account for background xs³He and shifting plume position, we calibrated He values using contemporaneous dissolved Mn (dMn). Applying this approach more widely, we found dFe/xs³He ratios of 12, 4–8, 4–44, and 4–86 nmol fmol−1 for the Menez Gwen, Lucky Strike, Rainbow, and TAG hydrothermal vent sites, respectively. Differences in plume dFe/xs³He across sites were not simply related to the vent endmember Fe and He fluxes. Within 40 km of the vents, the dFe/xs³He ratios decreased to 3–38 nmol fmol−1, due to the precipitation and subsequent settling of particulates. The ratio of colloidal Fe to dFe was consistently higher (0.67–0.97) than the deep N. Atlantic (0.5) throughout both the TAG and Rainbow plumes, indicative of Fe exchange between dissolved and particulate phases. Our comparison of TAG and Rainbow shows there is a limit to the amount of hydrothermal Fe released from vents that can form colloids in the rising plume. Higher particle loading will enhance the longevity of the Rainbow hydrothermal plume within the deep ocean assuming particles undergo continual dissolution/disaggregation. Future studies examining the length of plume pathways required to escape the ridge valley will be important in determining Fe supply from slow spreading mid-ocean ridges to the deep ocean, along with the frequency of ultramafic sites such as Rainbow. Resolving the ridge valley bathymetry and accounting for variability in vent sources in global biogeochemical models will be key to further constraining the hydrothermal Fe flux
    corecore