41 research outputs found

    Atom interferometry for tests of general relativity

    Get PDF
    The search for a fundamental, self-consistent theoretical framework to cover phenomena over all energy scales is possibly the most challenging quest of contemporary physics. Approaches to reconcile quantum mechanics and general relativity entail the modification of their foundations such as the equivalence principle. This corner stone of general relativity is suspected to be violated in various scenarios and is therefore under close scrutiny. Experiments based on the manipulation of cold atoms are excellently suited to challenge its different facets. Freely falling atoms constitute ideal test masses for tests of the universality of free fall in interferometric setups. Moreover, the superposition of internal energy eigenstates provides the notion of a clock, which allows to perform tests of the gravitational redshift. Furthermore, as atom interferometers constitute outstanding phasemeters, they hold the promise to detect gravitational waves, another integral aspect of general relativity. In recent years, atom interferometers have developed into versatile sensors with excellent accuracy and stability, and allow to probe physics at the interface of quantum mechanics and general relativity without classical analog. In this thesis, various aspects regarding tests of general relativity with atom interferometry have been theoretically investigated. This includes the analysis of fundamental effects as well as feasibility studies of experimental configurations. The work is partially focussed on a space-borne mission scenario for a dedicated quantum test of the universality of free fall beyond state-of-the-art by dropping matter waves of different elements. To enable the target accuracy at the level of 10^(−17), a compensation scheme has been developed and discussed, mitigating the detrimental effects of imperfect test mass co-location upon release and relaxing the requirements on the source preparation by several orders of magnitude. In addition, it was demonstrated that the careful design of quantum degenerate sources is indispensable for these experiments, requiring tailored schemes to prepare miscible binary sources. The possibility to test the gravitational redshift with atom interferometers has also been examined in this thesis and connected to the ideas of clock interferometry. With the proof that closed light pulse atom interferometers without transitions between internal internal states are not sensitive to gravitational time dilation, an ongoing scientific debate has been resolved. Instead, certain configurations were shown to implement a quantum version of the special-relativistic twin paradox, for which an experiment has been proposed. Finally, requirements on atomic sources and atom optics for scenarios of gravitational wave detection on ground and in space have been investigated.Deutsche Forschungsgemeinschaft/Sonderforschungsbereiche/SFB 1227 DQ-mat/B07/E

    Platform and environment requirements of a satellite quantum test of the Weak Equivalence Principle at the 10−1710^{-17} level

    Full text link
    The Space Time Explorer and QUantum Equivalence principle Space Test (STE-QUEST) recently proposed, aims at performing a precision test of the weak equivalence principle (WEP), a fundamental cornerstone of General Relativity. Taking advantage of the ideal operation conditions for high-precision quantum sensing on board of a satellite, it aims to detect possible violations of WEP down to the 10−1710^{-17} level. This level of performance leads to stringent environmental requirements on the control of the spacecraft. We assume an operation of a dual-species atom interferometer of rubidium and potassium isotopes in a double-diffraction configuration and derive the constraints to achieve an E\"otv\"os parameter η=10−17\eta=10^{-17} in statistical and systematic uncertainties. We show that technical heritage of previous satellite missions, such as MICROSCOPE, satisfies the platform requirements to achieve the proposed objectives underlying the technical readiness of the STE-QUEST mission proposal.Comment: 18 pages, 6 figure

    Interference of clocks: A quantum twin paradox

    Get PDF
    The phase of matter waves depends on proper time and is therefore susceptible to special-relativistic (kinematic) and gravitational (redshift) time dilation. Hence, it is conceivable that atom interferometers measure generalrelativistic time-dilation effects. In contrast to this intuition, we show that (i) closed light-pulse interferometers without clock transitions during the pulse sequence are not sensitive to gravitational time dilation in a linear potential. (ii) They can constitute a quantum version of the special-relativistic twin paradox. (iii) Our proposed experimental geometry for a quantum-clock interferometer isolates this effect. © 2019 The Authors

    Precision inertial sensing with quantum gases

    Get PDF
    Quantum sensors based on light-pulse atom interferometers allow for high-precision measurements of inertial and electromagnetic forces such as the accurate determination of fundamental constants as the fine structure constant or testing foundational laws of modern physics as the equivalence principle. These schemes unfold their full performance when large interrogation times and/or large momentum transfer can be implemented. In this article, we demonstrate how precision interferometry can benefit from the use of Bose-Einstein condensed sources when the state of the art is challenged. We contrast systematic and statistical effects induced by Bose-Einstein condensed sources with thermal sources in three exemplary science cases of Earth- and space-based sensors.Comment: 13 page

    Interference of Clocks: A Quantum Twin Paradox

    Get PDF
    The phase of matter waves depends on proper time and is therefore susceptible to special-relativistic (kinematic) and gravitational time dilation (redshift). Hence, it is conceivable that atom interferometers measure general-relativistic time-dilation effects. In contrast to this intuition, we show that light-pulse interferometers without internal transitions are not sensitive to gravitational time dilation, whereas they can constitute a quantum version of the special-relativistic twin paradox. We propose an interferometer geometry isolating the effect that can be used for quantum-clock interferometry.Comment: 9 Pages, 2 Figure

    Interacting quantum mixtures for precision atom interferometry

    Get PDF
    We present a source engineering concept for a binary quantum mixture suitable as input for differential, precision atom interferometry with drift times of several seconds. To solve the non-linear dynamics of the mixture, we develop a set of scaling approach equations and verify their validity contrasting it to the one of a system of coupled Gross-Pitaevskii equations. This scaling approach is a generalization of the standard approach commonly used for single species. Its validity range is discussed with respect to intra- and inter-species interaction regimes. We propose a multi-stage, non-linear atomic lens sequence to simultaneously create dual ensembles with ultra-slow kinetic expansion energies, below 15 pK. Our scheme has the advantage of mitigating wave front aberrations, a leading systematic effect in precision atom interferometry

    Committed global warming risks triggering multiple climate tipping points

    Get PDF
    Many scenarios for limiting global warming to 1.5°C assume planetary-scale carbon dioxide removal sufficient to exceed anthropogenic emissions, resulting in radiative forcing falling and temperatures stabilizing. However, such removal technology may prove unfeasible for technical, environmental, political, or economic reasons, resulting in continuing greenhouse gas emissions from hard-to-mitigate sectors. This may lead to constant concentration scenarios, where net anthropogenic emissions remain non-zero but small, and are roughly balanced by natural carbon sinks. Such a situation would keep atmospheric radiative forcing roughly constant. Fixed radiative forcing creates an equilibrium “committed” warming, captured in the concept of “equilibrium climate sensitivity.” This scenario is rarely analyzed as a potential extension to transient climate scenarios. Here, we aim to understand the planetary response to such fixed concentration commitments, with an emphasis on assessing the resulting likelihood of exceeding temperature thresholds that trigger climate tipping points. We explore transients followed by respective equilibrium committed warming initiated under low to high emission scenarios. We find that the likelihood of crossing the 1.5°C threshold and the 2.0°C threshold is 83% and 55%, respectively, if today's radiative forcing is maintained until achieving equilibrium global warming. Under the scenario that best matches current national commitments (RCP4.5), we estimate that in the transient stage, two tipping points will be crossed. If radiative forcing is then held fixed after the year 2100, a further six tipping point thresholds are crossed. Achieving a trajectory similar to RCP2.6 requires reaching net-zero emissions rapidly, which would greatly reduce the likelihood of tipping events

    Momentum Entanglement for Atom Interferometry

    Get PDF
    Compared to light interferometers, the flux in cold-atom interferometers is low and the associated shot noise is large. Sensitivities beyond these limitations require the preparation of entangled atoms in different momentum modes. Here, we demonstrate a source of entangled atoms that is compatible with state-of-the-art interferometers. Entanglement is transferred from the spin degree of freedom of a Bose-Einstein condensate to well-separated momentum modes, witnessed by a squeezing parameter of -3.1 (8) dB. Entanglement-enhanced atom interferometers promise unprecedented sensitivities for quantum gradiometers or gravitational wave detectors

    Global Tipping Points 2023 Report: Ch1.4 – Tipping points in ocean and atmosphere circulations.

    Get PDF
    This chapter assesses scientific evidence for tipping points across circulations in the ocean and atmosphere. The warming of oceans, modified wind patterns and increasing freshwater influx from melting ice hold the potential to disrupt established circulation patterns. We find evidence for tipping points in the Atlantic Meridional Overturning Circulation (AMOC), the North Atlantic Subpolar Gyre (SPG), and the Antarctic Overturning Circulation, which may collapse under warmer and ‘fresher’ (i.e. less salty) conditions. A slowdown or collapse of these oceanic circulations would have far-reaching consequences for the rest of the climate system, such as shifts in the monsoons. There is evidence that this has happened in the past, having led to vastly different states of the Sahara following abrupt changes in the West African monsoon, which we also classify as a tipping system. Evidence about tipping of the monsoons over South America and Asia is limited, however large-scale deforestation or air pollution are considered as potential sources of destabilisation. Although theoretically possible, there is little indication for tipping points in tropical clouds or mid-latitude atmospheric circulations. Similarly, tipping towards a more extreme or persistent El Niño Southern Oscillation (ENSO) state is not sufficiently supported by models and observations. While the thresholds for many of these systems are uncertain, tipping could be devastating for many millions of people. Stabilising climate (along with minimising other pressures, like aerosol pollution and ecosystem degradation) is critical for reducing the likelihood of reaching tipping points in the ocean-atmosphere system

    ELGAR—a European Laboratory for Gravitation and Atom-interferometric Research

    Get PDF
    Gravitational waves (GWs) were observed for the first time in 2015, one century after Einstein predicted their existence. There is now growing interest to extend the detection bandwidth to low frequency. The scientific potential of multi-frequency GW astronomy is enormous as it would enable to obtain a more complete picture of cosmic events and mechanisms. This is a unique and entirely new opportunity for the future of astronomy, the success of which depends upon the decisions being made on existing and new infrastructures. The prospect of combining observations from the future space-based instrument LISA together with third generation ground based detectors will open the way toward multi-band GW astronomy, but will leave the infrasound (0.1–10 Hz) band uncovered. GW detectors based on matter wave interferometry promise to fill such a sensitivity gap. We propose the European Laboratory for Gravitation and Atom-interferometric Research (ELGAR), an underground infrastructure based on the latest progress in atomic physics, to study space–time and gravitation with the primary goal of detecting GWs in the infrasound band. ELGAR will directly inherit from large research facilities now being built in Europe for the study of large scale atom interferometry and will drive new pan-European synergies from top research centers developing quantum sensors. ELGAR will measure GW radiation in the infrasound band with a peak strain sensitivity of 3.3×10−22/Hz3.3{\times}1{0}^{-22}/\sqrt{\text{Hz}} at 1.7 Hz. The antenna will have an impact on diverse fundamental and applied research fields beyond GW astronomy, including gravitation, general relativity, and geology.AB acknowledges support from the ANR (project EOSBECMR), IdEx Bordeaux—LAPHIA (project OE-TWR), theQuantERA ERA-NET (project TAIOL) and the Aquitaine Region (projets IASIG3D and USOFF).XZ thanks the China Scholarships Council (No. 201806010364) program for financial support. JJ thanks ‘AssociationNationale de la Recherche et de la Technologie’ for financial support (No. 2018/1565).SvAb, NG, SL, EMR, DS, and CS gratefully acknowledge support by the German Space Agency (DLR) with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under Grants No. DLR∌50WM1641 (PRIMUS-III), 50WM1952 (QUANTUS-V-Fallturm), and 50WP1700 (BECCAL), 50WM1861 (CAL), 50WM2060 (CARIOQA) as well as 50RK1957 (QGYRO)SvAb, NG, SL, EMR, DS, and CS gratefully acknowledge support by ‘NiedersĂ€chsisches Vorab’ through the ‘Quantum- and Nano-Metrology (QUANOMET)’ initiative within the project QT3, and through ‘Förderung von Wissenschaft und Technik in Forschung und Lehre’ for the initial funding of research in the new DLR-SI Institute, the CRC 1227 DQ-mat within the projects A05 and B07DS gratefully acknowledges funding by the Federal Ministry of Education and Research (BMBF) through the funding program Photonics Research Germany under contract number 13N14875.RG acknowledges Ville de Paris (Emergence programme HSENS-MWGRAV), ANR (project PIMAI) and the Fundamental Physics and Gravitational Waves (PhyFOG) programme of Observatoire de Paris for support. We also acknowledge networking support by the COST actions GWverse CA16104 and AtomQT CA16221 (Horizon 2020 Framework Programme of the European Union).The work was also supported by the German Space Agency (DLR) with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under Grant Nos.∌50WM1556, 50WM1956 and 50WP1706 as well as through the DLR Institutes DLR-SI and DLR-QT.PA-S, MN, and CFS acknowledge support from contracts ESP2015-67234-P and ESP2017-90084-P from the Ministry of Economy and Business of Spain (MINECO), and from contract 2017-SGR-1469 from AGAUR (Catalan government).SvAb, NG, SL, EMR, DS, and CS gratefully acknowledge support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—EXC-2123 QuantumFrontiers—390837967 (B2) andCRC1227 ‘DQ-mat’ within projects A05, B07 and B09.LAS thanks Sorbonne UniversitĂ©s (Emergence project LORINVACC) and Conseil Scientifique de l'Observatoire de Paris for funding.This work was realized with the financial support of the French State through the ‘Agence Nationale de la Recherche’ (ANR) in the frame of the ‘MRSEI’ program (Pre-ELGAR ANR-17-MRS5-0004-01) and the ‘Investissement d'Avenir’ program (Equipex MIGA: ANR-11-EQPX-0028, IdEx Bordeaux—LAPHIA: ANR-10-IDEX-03-02).Peer Reviewe
    corecore