6,753 research outputs found
BCI-Based Navigation in Virtual and Real Environments
A Brain-Computer Interface (BCI) is a system that enables people to control an external device with their brain activity, without the need of any muscular activity. Researchers in the BCI field aim to develop applications to improve the quality of life of severely disabled patients, for whom a BCI can be a useful channel for interaction with their environment. Some of these systems are intended to control a mobile device (e. g. a wheelchair). Virtual Reality is a powerful tool that can provide the subjects with an opportunity to train and to test different applications in a safe environment. This technical review will focus on systems aimed at navigation, both in virtual and real environments.This work was partially supported by the Innovation, Science and Enterprise Council of the Junta de Andalucía (Spain), project P07-TIC-03310, the Spanish Ministry of Science and Innovation, project TEC 2011-26395 and by the European fund ERDF
Denoising Scanning Tunneling Microscopy Images of Graphene with Supervised Machine Learning
Machine learning (ML) methods are extraordinarily successful at denoising
photographic images. The application of such denoising methods to scientific
images is, however, often complicated by the difficulty in experimentally
obtaining a suitable expected result as an input to training the ML network.
Here, we propose and demonstrate a simulation-based approach to address this
challenge for denoising atomic-scale scanning tunneling microscopy (STM)
images, which consists of training a convolutional neural network on STM images
simulated based on a tight-binding electronic structure model. As model
materials, we consider graphite and its mono- and few-layer counterpart,
graphene. With the goal of applying it to any experimental STM image obtained
on graphitic systems, the network was trained on a set of simulated images with
varying characteristics such as tip height, sample bias, atomic-scale defects,
and non-linear background. Denoising of both simulated and experimental images
with this approach is compared to that of commonly-used filters, revealing a
superior outcome of the ML method in the removal of noise as well as scanning
artifacts - including on features not simulated in the training set. An
extension to larger STM images is further discussed, along with intrinsic
limitations arising from training set biases that discourage application to
fundamentally unknown surface features. The approach demonstrated here provides
an effective way to remove noise and artifacts from typical STM images,
yielding the basis for further feature discernment and automated processing.Comment: Includes S
Ribavirin as a First Treatment Approach for Hepatitis E Virus Infection in Transplant Recipient Patients
The hepatitis E virus (HEV) is the major cause of acute hepatitis of viral origin worldwide. Despite its usual course as an asymptomatic self-limited hepatitis, there are highly susceptible populations, such as those with underlying immunosuppression, which could develop chronic hepatitis. In this situation, implementation of therapy is mandatory in the sense to facilitate viral clearance. Currently, there are no specific drugs approved for HEV infection, but ribavirin (RBV), the drug of choice, is used for off-label treatment. Here, we present two cases of chronic HEV infection in transplant patients, reviewing and discussing the therapeutic approach available in the literature. The use of RBV for the treatment of an HEV infection in organ transplant patients seems to be effective. The recommendation of 12 weeks of therapy is adequate in terms of efficacy. Nevertheless, there are important issues that urgently need to be assessed, such as optimal duration of therapy and drug dosage
Coherent Pair Production by Photons in the 20-170 GeV Energy Range Incident on Crystals and Birefringence
The cross section for coherent pair production by linearly polarised photons
in the 20-170 GeV energy range was measured for photon aligned incidence on
ultra-high quality diamond and germanium crystals. The theoretical description
of coherent bremsstrahlung and coherent pair production phenomena is an area of
active theoretical debate and development. However, under our experimental
conditions, the theory predicted the combined cross section and polarisation
experimental observables very well indeed. In macroscopic terms, our experiment
measured a birefringence effect in pair production in a crystal. This study of
this effect also constituted a measurement of the energy dependent linear
polarisation of photons produced by coherent bremsstrahlung in aligned
crystals. New technologies for manipulating high energy photon beams can be
realised based on an improved understanding of QED phenomena at these energies.
In particular, this experiment demonstrates an efficient new polarimetry
technique. The pair production measurements were done using two independent
methods simultaneously. The more complex method using a magnet spectrometer
showed that the simpler method using a multiplicity detector was also viable.Comment: 10 pages, 13 figures, 1 table, REVTeX4 two column, Version for
publicatio
Photovoltaic LiNbO3particles: Applications to Biomedicine/Biophotonics
Recently, a novel method to trap and pattern ensembles of nanoparticles has been proposed and
tested. It relies on the photovoltaic (PV) properties of certain ferroelectric crystals such as LiNbO3 [1,2].
These crystals, when suitably doped, develop very high electric fields in response to illumination with
light of suitable wavelength. The PV effect lies in the asymmetrical excitation of electrons giving rise to
PV currents and associated space-charge fields (photorefractive effect). The field generated in the bulk
of the sample propagates to the surrounding medium as evanescent fields. When dielectric or metal
nanoparticles are deposited on the surface of the sample the evanescent fields give rise to either
electrophoretic or dielectrophoretic forces, depending on the charge state of the particles, that induce
the trapping and patterning effects [3,4].
The purpose of this work has been to explore the effects of such PV fields in the biology and
biomedical areas. A first work was able to show the necrotic effects induced by such fields on He-La
tumour cells grown on the surface of an illuminated iron-doped LiNbO3 crystal [5]. In principle, it is
conceived that LiNbO3 nanoparticles may be advantageously used for such biomedical purposes
considering the possibility of such nanoparticles being incorporated into the cells. Previous experiments
using microparticles have been performed [5] with similar results to those achieved with the substrate.
Therefore, the purpose of this work has been to fabricate and characterize the LiNbO3 nanoparticles and
assess their necrotic effects when they are incorporated on a culture of tumour cells.
Two different preparation methods have been used: 1) mechanical grinding from crystals, and 2)
bottom-up sol-gel chemical synthesis from metal-ethoxide precursors. This later method leads to a more
uniform size distribution of smaller particles (down to around 50 nm). Fig. 1(a) and 1(b) shows SEM
images of the nanoparticles obtained with both method.
An ad hoc software taking into account the physical properties of the crystal, particullarly donor
and aceptor concentrations has been developped in order to estimate the electric field generated in
noparticles. In a first stage simulations of the electric current of nanoparticles, in a conductive media,
due to the PV effect have been carried out by MonteCarlo simulations using the Kutharev 1-centre
transport model equations [6] . Special attention has been paid to the dependence on particle size and
[Fe2+]/[Fe3+]. First results on cubic particles shows large dispersion for small sizes due to the random
number of donors and its effective concentration (Fig 2).
The necrotic (toxicity) effect of nanoparticles incorporated into a tumour cell culture subjected to
30 min. illumination with a blue LED is shown in Fig.3. For each type of nanoparticle the percent of cell
survival in dark and illumination conditions has been plot as a function of the particle dilution factor. Fig.
1a corresponds to mechanical grinding particles whereas 1b and 1c refer to chemically synthesized
particles with two oxidation states. The light effect is larger with mechanical grinding nanoparticles, but
dark toxicity is also higher. For chemically synthesized nanoparticles dark toxicity is low but only in
oxidized samples, where the PV effect is known to be larger, the light effect is appreciable.
These preliminary results demonstrate that Fe:LiNbO· nanoparticles have a biological damaging
effect on cells, although there are many points that should be clarified and much space for PV
nanoparticles optimization. In particular, it appears necessary to determine the fraction of nanoparticles
that become incorporated into the cells and the possible existence of threshold size effects.
This work has been supported by MINECO under grant MAT2011-28379-C03
Linear to Circular Polarisation Conversion using Birefringent Properties of Aligned Crystals for Multi-GeV Photons
We present the first experimental results on the use of a thick aligned Si
crystal acting as a quarter wave plate to induce a degree of circular
polarisation in a high energy linearly polarised photon beam. The linearly
polarised photon beam is produced from coherent bremsstrahlung radiation by 178
GeV unpolarised electrons incident on an aligned Si crystal, acting as a
radiator. The linear polarisation of the photon beam is characterised by
measuring the asymmetry in electron-positron pair production in a Ge crystal,
for different crystal orientations. The Ge crystal therefore acts as an
analyser. The birefringence phenomenon, which converts the linear polarisation
to circular polarisation, is observed by letting the linearly polarised photons
beam pass through a thick Si quarter wave plate crystal, and then measuring the
asymmetry in electron-positron pair production again for a selection of
relative angles between the crystallographic planes of the radiator, analyser
and quarter wave plate. The systematics of the difference between the measured
asymmetries with and without the quarter wave plate are predicted by theory to
reveal an evolution in the Stokes parameters from which the appearance of a
circularly polarised component in the photon beam can be demonstrated. The
measured magnitude of the circularly polarised component was consistent with
the theoretical predictions, and therefore is in indication of the existence of
the birefringence effect.Comment: 12 pages, 12 figures, 1 table, REVTeX4 two column, Version for
publicatio
Results on the Coherent Interaction of High Energy Electrons and Photons in Oriented Single Crystals
The CERN-NA-59 experiment examined a wide range of electromagnetic processes
for multi-GeV electrons and photons interacting with oriented single crystals.
The various types of crystals and their orientations were used for producing
photon beams and for converting and measuring their polarisation.
The radiation emitted by 178 GeV unpolarised electrons incident on a 1.5 cm
thick Si crystal oriented in the Coherent Bremsstrahlung (CB) and the
String-of-Strings (SOS) modes was used to obtain multi-GeV linearly polarised
photon beams.
A new crystal polarimetry technique was established for measuring the linear
polarisation of the photon beam. The polarimeter is based on the dependence of
the Coherent Pair Production (CPP) cross section in oriented single crystals on
the direction of the photon polarisation with respect to the crystal plane.
Both a 1 mm thick single crystal of Germanium and a 4 mm thick multi-tile set
of synthetic Diamond crystals were used as analyzers of the linear
polarisation.
A birefringence phenomenon, the conversion of the linear polarisation of the
photon beam into circular polarisation, was observed. This was achieved by
letting the linearly polarised photon beam pass through a 10 cm thick Silicon
single crystal that acted as a "quarter wave plate" (QWP) as suggested by N.
Cabibbo et al.Comment: Presented at International workshop "Relativistic Channeling and
Related Coherent Phenomena", Frascati (Rome) 23-26 March 200
The decay Z -> neutrino antineutrino photon in the Standard Model
A complete study of the one-loop induced decay Z -> neutrino antineutrino
photon is presented within the framework of the Standard Model. The advantages
of using a nonlinear gauge are stressed. We have found that the main
contributions come from the electric dipole and the magnetic dipole transitions
of the Z gauge boson and the neutrino, respectively. We obtain a branching
ratio B=7.16E-10, which is about four orders of magnitude smaller than the
bound recentely obtained by the L3 collaboration and thus it leaves open a
window to search for new physics effects in single-photon decays of the Z
boson.Comment: REVTEX,15 pp, 5 eps figures, Approved for publication in Physical
Review
Coherent bremsstrahlung, boherent pair production, birefringence and polarimetry in the 20-170 GeV energy range using aligned crystals
The processes of coherent bremsstrahlung (CB) and coherent pair production
(CPP) based on aligned crystal targets have been studied in the energy range
20-170 GeV. The experimental arrangement allowed for measurements of single
photon properties of these phenomena including their polarization dependences.
This is significant as the theoretical description of CB and CPP is an area of
active theoretical debate and development. With the theoretical approach used
in this paper both the measured cross sections and polarization observables are
predicted very well. This indicates a proper understanding of CB and CPP up to
energies of 170 GeV. Birefringence in CPP on aligned crystals is applied to
determine the polarization parameters in our measurements. New technologies for
high energy photon beam optics including phase plates and polarimeters for
linear and circular polarization are demonstrated in this experiment. Coherent
bremsstrahlung for the strings-on-strings (SOS) orientation yields a larger
enhancement for hard photons than CB for the channeling orientations of the
crystal. Our measurements and our calculations indicate low photon
polarizations for the high energy SOS photons.Comment: 23 pages, 27 figures, 2 tables, REVTeX4 two column
Quantification of inaccurate diagnosis of COPD in primary care medicine: An analysis of the COACH clinical audit
Background: Inaccurate diagnosis in COPD is a current problem with relevant consequences in terms of inefficient health care, which has not been thoroughly studied in primary care medicine. The aim of the present study was to evaluate the degree of inaccurate diagnosis in Primary Care in Spain and study the determinants associated with it. Methods: The Community Assessment of COPD Health Care (COACH) study is a national, observational, randomized, non-interventional, national clinical audit aimed at evaluating clinical practice for patients with COPD in primary care medicine in Spain. For the present analysis, a correct diagnosis was evaluated based on previous exposure and airway obstruction with and without the presence of symptoms. The association of patient-level and center-level variables with inaccurate diagnosis was studied using multivariate multilevel binomial logistic regression models. Results: During the study 4,307 cases from 63 centers were audited. The rate of inaccurate diagnosis was 82.4% (inter-regional range from 76.8% to 90.2%). Patient-related interventions associated with inaccurate diagnosis were related to active smoking, lung function evaluation, and specific therapeutic interventions. Center-level variables related to the availability of certain complementary tests and different aspects of the resources available were also associated with an inaccurate diagnosis. Conclusions: The prevalence data for the inaccurate diagnosis of COPD in primary care medicine in Spain establishes a point of reference in the clinical management of COPD. The descriptors of the variables associated with this inaccurate diagnosis can be used to identify cases and centers in which inaccurate diagnosis is occurring considerably, thus allowing for improvement
- …