175 research outputs found

    Accounting for Uncontrolled Variations in Low-Speed Turbine Experiments

    Get PDF
    It is common to assume that the performance of low-speed turbines depend only on the flow coefficient and Reynolds number. However, when the turbine has an atmospheric inlet and uses unconditioned air, variations in ambient pressure, temperature and humidity are introduced. Whilst it is still possible to maintain the required values for the flow coefficient and Reynolds number, the ambient variations affect additional non-dimensional quantities which are related to the blade speed and gas properties. Generally, these additional non-dimensional quantities are uncontrolled and affect the turbine performance. In addition, thermal effects, which are exacerbated by the use of plastic blades, can cause changes in the blade row seal clearance and these also affect the performance. Therefore to obtain measurements with greater accuracy and repeatability, the changes in the uncontrolled non-dimensional quantities must be accounted. This paper contains four parts. Firstly, it is described how suitable data acquisition parameters can be determined to eliminate short time scale facility unsteadiness within the measurements. Secondly, by the analysis of models, the most appropriate forms for the additional non-dimensional quantities are obtained. Since the variations in the uncontrolled non-dimensional quantities affect repeatability the size of the effect on the turbine performance is quantified. Thirdly, a best-fit accounting methodology is described which reduces the effects of the uncontrolled non-dimensional quantities on turbine performance provided sufficient directly related measurements are available. Finally, the observations are generalised to high-speed turbomachines.The authors are grateful to Rolls-Royce plc who supported this work through SAMULET Project 1, in collaboration with the TSB (Ref.: AB265C) and the EPSRC (Ref.: EP/H001395/1), and for their permission to publish

    Phase I Study of the Novel Enhancer of Zeste Homolog 2 (EZH2) Inhibitor GSK2816126 in Patients with Advanced Hematologic and Solid Tumors.

    Full text link
    PURPOSE: Enhancer of zeste homolog 2 (EZH2) activity is dysregulated in many cancers. PATIENTS AND METHODS: This phase I study determined the safety, maximum-tolerated dose (MTD), pharmacokinetics, and pharmacodynamics of the intravenously administered, highly selective EZH2 inhibitor, GSK2816126, (NCT02082977). Doses of GSK2816126 ranged from 50 to 3,000 mg twice weekly, and GSK2816126 was given 3-weeks-on/1-week-off in 28-day cycles. Eligible patients had solid tumors or B-cell lymphomas with no available standard treatment regimen. RESULTS: Forty-one patients (21 solid tumors, 20 lymphoma) received treatment. All patients experienced ≥1 adverse event (AE). Fatigue [22 of 41 (53.7%)] and nausea [20 of 41 (48.8%)] were the most common toxicity. Twelve (32%) patients experienced a serious AE. Dose-limiting elevated liver transaminases occurred in 2 of 7 patients receiving 3,000 mg of GSK2816126; 2,400 mg was therefore established as the MTD. Following intravenous administration of 50 to 3,000 mg twice weekly, plasma GSK2816126 levels decreased biexponentially, with a mean terminal elimination half-life of approximately 27 hours. GSK2816126 exposure (maximum observed plasma concentration and area under the plasma-time curve) increased in a dose-proportional manner. No change from baseline in H3K27me3 was seen in peripheral blood mononuclear cells. Fourteen of 41 (34%) patients had radiological best response of stable disease, 1 patient with lymphoma achieved a partial response, 21 of 41 (51%) patients had progressive disease, and 5 patients were unevaluable for antitumor response. CONCLUSIONS: The MTD of GSK2816126 was established at 2,400 mg, but the dosing method and relatively short half-life limited effective exposure, and modest anticancer activity was observed at tolerable doses

    Constitutive and Treatment-Induced CXCL8-Signalling Selectively Modulates the Efficacy of Anti-Metabolite Therapeutics in Metastatic Prostate Cancer

    Get PDF
    <div><h3>Background</h3><p>The current study was undertaken to characterize the effect of anti-metabolites on inducing CXCL8 signaling and determining whether the constitutive and/or drug-induced CXCL8 signaling in metastatic prostate cancer (CaP) cells modulates their sensitivity to this class of agent.</p> <h3>Methods</h3><p>The response of metastatic CaP cells to 5-Fluorouracil (5-FU), Pemetrexed or Tomudex was determined using cell count assays, flow cytometry and PARP cleavage analysis. Quantitative-PCR, ELISA and immunoblots were employed to determine effects of drugs or CXCL8 administration on target gene/protein expression.</p> <h3>Results</h3><p>Administration of 5-FU but not pemetrexed potentiated CXCL8 secretion and increased CXCR1 and CXCR2 gene expression in metastatic PC3 cells. Consistent with this, the inhibition of CXCL8 signaling using a CXCR2 antagonist, AZ10397767, increased the cytotoxicity of 5-FU by 4-fold (P<0.001), and increased 5-FU-induced apoptosis in PC3 cells (P<0.01). In contrast, while administration of AZ10397767 had no effect on the sensitivity of pemetrexed, the CXCR2 antagonist exerted the greatest effect in increasing the sensitivity of PC3 cells to Tomudex, a directed thymidylate synthase (TS) inhibitor. Subsequent experiments confirmed that administration of recombinant human CXCL8 increased TS expression, a response mediated in part by the CXCR2 receptor. Moreover, siRNA-mediated knockdown of the CXCL8-target gene Bcl-2 increased the sensitivity of PC3 cells to 5-FU.</p> <h3>Conclusions</h3><p>CXCL8 signaling provides a selective resistance of metastatic prostate cancer cells to specific anti-metabolites by promoting a target-associated resistance, in addition to underpinning an evasion of treatment-induced apoptosis.</p> </div

    Evidence That Aberrant Expression of Tissue Transglutaminase Promotes Stem Cell Characteristics in Mammary Epithelial Cells

    Get PDF
    Cancer stem cells (CSCs) or tumor initiating cells (TICs) make up only a small fraction of total tumor cell population, but recent evidence suggests that they are responsible for tumor initiation and the maintenance of tumor growth. Whether CSCs/TICs originate from normal stem cells or result from the dedifferentiation of terminally differentiated cells remains unknown. Here we provide evidence that sustained expression of the proinflammatory protein tissue transglutaminase (TG2) confers stem cell like properties in non-transformed and transformed mammary epithelial cells. Sustained expression of TG2 was associated with increase in CD44high/CD24low/- subpopulation, increased ability of cells to form mammospheres, and acquisition of self-renewal ability. Mammospheres derived from TG2-transfected mammary epithelial cells (MCF10A) differentiated into complex secondary structures when grown in Matrigel cultures. Cells in these secondary structures differentiated into Muc1-positive (luminal marker) and integrin α6-positive (basal marker) cells in response to prolactin treatment. Highly aggressive MDA-231 and drug-resistant MCF-7/RT breast cancer cells, which express high basal levels of TG2, shared many traits with TG2-transfected MCF10A stem cells but unlike MCF10A-derived stem cells they failed to form the secondary structures and to differentiate into Muc1-positive luminal cells when grown in Matrigel culture. Downregulation of TG2 attenuated stem cell properties in both non-transformed and transformed mammary epithelial cells. Taken together, these results suggested a new function for TG2 and revealed a novel mechanism responsible for promoting the stem cell characteristics in adult mammary epithelial cells

    Tissue Transglutaminase Promotes Drug Resistance and Invasion by Inducing Mesenchymal Transition in Mammary Epithelial Cells

    Get PDF
    Recent observations that aberrant expression of tissue transglutaminase (TG2) promotes growth, survival, and metastasis of multiple tumor types is of great significance and could yield novel therapeutic targets for improved patient outcomes. To accomplish this, a clear understanding of how TG2 contributes to these phenotypes is essential. Using mammary epithelial cell lines (MCF10A, MCF12A, MCF7 and MCF7/RT) as a model system, we determined the impact of TG2 expression on cell growth, cell survival, invasion, and differentiation. Our results show that TG2 expression promotes drug resistance and invasive functions by inducing epithelial-mesenchymal transition (EMT). Thus, TG2 expression supported anchorage-independent growth of mammary epithelial cells in soft-agar, disrupted the apical-basal polarity, and resulted in disorganized acini structures when grown in 3D-culture. At molecular level, TG2 expression resulted in loss of E-cadherin and increased the expression of various transcriptional repressors (Snail1, Zeb1, Zeb2 and Twist1). Tumor growth factor-beta (TGF-β) failed to induce EMT in cells lacking TG2 expression, suggesting that TG2 is a downstream effector of TGF-β-induced EMT. Moreover, TG2 expression induced stem cell-like phenotype in mammary epithelial cells as revealed by enrichment of CD44+/CD24-/low cell populations. Overall, our studies show that aberrant expression of TG2 is sufficient for inducing EMT in epithelial cells and establish a strong link between TG2 expression and progression of metastatic breast disease

    First observations of separated atmospheric nu_mu and bar{nu-mu} events in the MINOS detector

    Get PDF
    The complete 5.4 kton MINOS far detector has been taking data since the beginning of August 2003 at a depth of 2070 meters water-equivalent in the Soudan mine, Minnesota. This paper presents the first MINOS observations of nuµ and [overline nu ]µ charged-current atmospheric neutrino interactions based on an exposure of 418 days. The ratio of upward- to downward-going events in the data is compared to the Monte Carlo expectation in the absence of neutrino oscillations, giving Rup/downdata/Rup/downMC=0.62-0.14+0.19(stat.)±0.02(sys.). An extended maximum likelihood analysis of the observed L/E distributions excludes the null hypothesis of no neutrino oscillations at the 98% confidence level. Using the curvature of the observed muons in the 1.3 T MINOS magnetic field nuµ and [overline nu ]µ interactions are separated. The ratio of [overline nu ]µ to nuµ events in the data is compared to the Monte Carlo expectation assuming neutrinos and antineutrinos oscillate in the same manner, giving R[overline nu ][sub mu]/nu[sub mu]data/R[overline nu ][sub mu]/nu[sub mu]MC=0.96-0.27+0.38(stat.)±0.15(sys.), where the errors are the statistical and systematic uncertainties. Although the statistics are limited, this is the first direct observation of atmospheric neutrino interactions separately for nuµ and [overline nu ]µ

    Syndecan-1 Enhances Proliferation, Migration and Metastasis of HT-1080 Cells in Cooperation with Syndecan-2

    Get PDF
    Syndecans are transmembrane heparan sulphate proteoglycans. Their role in the development of the malignant phenotype is ambiguous and depends upon the particular type of cancer. Nevertheless, syndecans are promising targets in cancer therapy, and it is important to elucidate the mechanisms controlling their various cellular effects. According to earlier studies, both syndecan-1 and syndecan-2 promote malignancy of HT-1080 human fibrosarcoma cells, by increasing the proliferation rate and the metastatic potential and migratory ability, respectively. To better understand their tumour promoter role in this cell line, syndecan expression levels were modulated in HT-1080 cells and the growth rate, chemotaxis and invasion capacity were studied. For in vivo testing, syndecan-1 overexpressing cells were also inoculated into mice. Overexpression of full length or truncated syndecan-1 lacking the entire ectodomain but containing the four juxtamembrane amino acids promoted proliferation and chemotaxis. These effects were accompanied by a marked increase in syndecan-2 protein expression. The pro-migratory and pro-proliferative effects of truncated syndecan-1 were not observable when syndecan-2 was silenced. Antisense silencing of syndecan-2, but not that of syndecan-1, inhibited cell migration. In vivo, both full length and truncated syndecan-1 increased tumour growth and metastatic rate. Based on our in vitro results, we conclude that the tumour promoter role of syndecan-1 observed in HT-1080 cells is independent of its ectodomain; however, in vivo the presence of the ectodomain further increases tumour proliferation. The enhanced migratory ability induced by syndecan-1 overexpression is mediated by syndecan-2. Overexpression of syndecan-1 also leads to activation of IGF1R and increased expression of Ets-1. These changes were not evident when syndecan-2 was overexpressed. These findings suggest the involvement of IGF1R and Ets-1 in the induction of syndecan-2 synthesis and stimulation of proliferation by syndecan-1. This is the first report demonstrating that syndecan-1 enhances malignancy of a mesenchymal tumour cell line, via induction of syndecan-2 expression

    Promoter methylation and large intragenic rearrangements of DPYD are not implicated in severe toxicity to 5-fluorouracil-based chemotherapy in gastrointestinal cancer patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Severe toxicity to 5-fluorouracil (5-FU) based chemotherapy in gastrointestinal cancer has been associated with constitutional genetic alterations of the dihydropyrimidine dehydrogenase gene (<it>DPYD</it>).</p> <p>Methods</p> <p>In this study, we evaluated <it>DPYD </it>promoter methylation through quantitative methylation-specific PCR and screened <it>DPYD </it>for large intragenic rearrangements in peripheral blood from 45 patients with gastrointestinal cancers who developed severe 5-FU toxicity. <it>DPYD </it>promoter methylation was also assessed in tumor tissue from 29 patients</p> <p>Results</p> <p>Two cases with the IVS14+1G > A exon 14 skipping mutation (c.1905+1G > A), and one case carrying the 1845 G > T missense mutation (c.1845G > T) in the DPYD gene were identified. However, <it>DPYD </it>promoter methylation and large <it>DPYD </it>intragenic rearrangements were absent in all cases analyzed.</p> <p>Conclusions</p> <p>Our results indicate that <it>DPYD </it>promoter methylation and large intragenic rearrangements do not contribute significantly to the development of 5-FU severe toxicity in gastrointestinal cancer patients, supporting the need for additional studies on the mechanisms underlying genetic susceptibility to severe 5-FU toxicity.</p

    Anticancer activity of an extract from needles and twigs of Taxus cuspidata and its synergistic effect as a cocktail with 5-fluorouracil

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Botanical medicines are increasingly combined with chemotherapeutics as anticancer drug cocktails. This study aimed to assess the chemotherapeutic potential of an extract of <it>Taxus cuspidata </it>(<it>TC</it>) needles and twigs produced by artificial cuttage and its co-effects as a cocktail with 5-fluorouracil (5-FU).</p> <p>Methods</p> <p>Components of <it>TC </it>extract were identified by HPLC fingerprinting. Cytotoxicity analysis was performed by MTT assay or ATP assay. Apoptosis studies were analyzed by H & E, PI, TUNEL staining, as well as Annexin V/PI assay. Cell cycle analysis was performed by flow cytometry. 5-FU concentrations in rat plasma were determined by HPLC and the pharmacokinetic parameters were estimated using 3p87 software. Synergistic efficacy was subjected to median effect analysis with the mutually nonexclusive model using Calcusyn1 software. The significance of differences between values was estimated by using a one-way ANOVA.</p> <p>Results</p> <p><it>TC </it>extract reached inhibition rates of 70-90% in different human cancer cell lines (HL-60, BGC-823, KB, Bel-7402, and HeLa) but only 5-7% in normal mouse T/B lymphocytes, demonstrating the broad-spectrum anticancer activity and low toxicity to normal cells of <it>TC </it>extract <it>in vitro</it>. <it>TC </it>extract inhibited cancer cell growth by inducing apoptosis and G<sub>2</sub>/M cell cycle arrest. Most interestingly, <it>TC </it>extract and 5-FU, combined as a cocktail, synergistically inhibited the growth of cancer cells <it>in vitro</it>, with Combination Index values (CI) ranging from 0.90 to 0.26 at different effect levels from IC50 to IC90 in MCF-7 cells, CI ranging from 0.93 to 0.13 for IC40 to IC90 in PC-3M-1E8 cells, and CI < 1 in A549 cells. In addition, the cocktail had lower cytotoxicity in normal human cell (HEL) than 5-FU used alone. Furthermore, <it>TC </it>extract did not affect the pharmacokinetics of 5-FU in rats.</p> <p>Conclusions</p> <p>The combinational use of the <it>TC </it>extract with 5-FU displays strong cytotoxic synergy in cancer cells and low cytotoxicity in normal cells. These findings suggest that this cocktail may have a potential role in cancer treatment.</p
    • …
    corecore