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Abstract 

It is common to assume that the performance of low-speed turbines depend only on the flow 

coefficient and Reynolds number. As such the required operating point is achieved by controlling the 

values of these two non-dimensional quantities by, for example, appropriate choices for the mass flow 

rate and applied brake torque. However, when the turbine has an atmospheric inlet and uses 

unconditioned air, variations in ambient pressure, temperature and humidity are introduced. Whilst it 

is still possible to maintain the required values for the flow coefficient and Reynolds number, the 

ambient variations affect additional non-dimensional quantities which are related to the blade speed 

and gas properties. Generally, the values of these additional non-dimensional quantities cannot be 

controlled and, consequently, they affect the turbine performance. In addition, thermal effects, which 

are exacerbated by the use of plastic blades, can cause changes in the blade row seal clearance and 

these also affect the performance. Therefore to obtain measurements with greater accuracy and 

repeatability, the changes in the uncontrolled non-dimensional quantities must be accounted. 

This paper contains four parts. Firstly, it is described how suitable data acquisition parameters can be 

determined to eliminate short time scale facility unsteadiness within the measurements. Secondly, by 

the analysis of models, the most appropriate forms for the additional non-dimensional quantities that 

influence turbine performance are obtained. Since the variations in the uncontrolled non-dimensional 

quantities affect repeatability the size of the effect on the turbine performance is quantified. Thirdly, a 

best-fit accounting methodology is described which reduces the effects of the uncontrolled non-

dimensional quantities on turbine performance provided sufficient directly related measurements are 

available. Finally, the observations are generalised to high-speed turbomachines. 
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Introduction 

The accounting methodology described in this paper arose out of a systematic investigation 

into unexplained poor experimental repeatability for the low-speed, two-stage turbine facility. 

Throughout an experimental programme lasting several weeks, the facility control variables, flow 

coefficient and Reynolds number, had fractional noise, σ µ , less than 0.01%. However, even after 

including the effects of humidity within the bellmouth calibration, the measured turbine work 

coefficient varied by more than 0.5% whilst a pessimistic error analysis suggested that it ought to be 

reliable to within 0.1%. 

It will be shown that there are five non-dimensional quantities that are relevant in determining 

turbine performance. The first two are the flow coefficient and Reynolds number and these are 

controlled at their required values during the experiments. The remaining three non-dimensional 

quantities are related to the blade speed, gas expansion properties and blade row seal clearances. The 

values of these are uncontrolled as they are determined by the ambient conditions.  

To demonstrate the importance of appropriately accounting for changes in the uncontrolled 

non-dimensional quantities an illustrative example is presented in Fig. 1. The turbine work 

coefficient, ψ, is shown against one of the uncontrolled quantities, the non-dimensional blade speed, 

b. Two dataset families, representing different turbine geometries, are illustrated by the coloured 

symbols: black and red. At the design flow coefficient and Reynolds number, six repeat experiments 

were undertaken for each family (indicated by the hollow symbols). However, the black turbine 

geometry was tested under ambient conditions which produced lower values of the uncontrolled non-

dimensional blade speed, b. If the uncontrolled variations are ignored, a straight forward average of 

each family of measurements, ψ , indicated by the filled square symbol, would suggest that the red 

geometry is the better of the two. However, because there is a variation in the uncontrolled quantity, 

b, it is necessary to account each dataset family to a common datum, datumb . This can be done by best-

fitting each family of data to obtain datumψ , indicated by the filled circular symbols. By accounting the 

data to a common datum a more reliable result is obtained: the black geometry is better than the red. 
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This illustrative example shows that without accounting for the variations in the uncontrolled 

non-dimensional quantities experimental results could be misinterpreted. To obtain reliable results it 

is necessary to know both the sensitivity of the measurements to the uncontrolled quantities and the 

range over which they vary. 

Background 

The flow through low-speed turbines, where the blade Mach number is less than 0.1, is 

traditionally considered to be well modelled by assuming the flow to be incompressible (constant 

density). In such cases the turbine performance is assumed to be just a function of the flow 

coefficient, which determines the velocity triangles, and the Reynolds number which determines the 

viscous effects. This is convenient because there are only two variables (mass flow rate and brake 

torque) which can be adjusted to achieve the required turbine operating point. 

However, researchers are aware that there are other non-dimensional quantities that can affect 

turbine performance. The most common additional quantity, which is introduced in the analysis of 

high-speed turbomachines, is the non-dimensional blade speed (often just cited as 0N T ). Similarly, 

where humidity or different working gases are involved a non-dimensional quantity associated with 

the gas properties (e.g. adiabatic index γ ) must also be included. In cases where thermal expansion, 

or growth due to centrifugal stress, is significant (e.g. plastic blades) there is a further relevant non-

dimensional quantity, gap span . In low-speed turbomachines these additional non-dimensional 

quantities are generally ignored because they are assumed to have little effect and cannot be directly 

controlled. 

During the experimental programme the low-speed turbine was operated at its design flow 

coefficient and Reynolds number, however, changes in the ambient conditions caused the following 

variations. The blade Mach number (typically 0.076) varied by ±3%, the relative humidity between 

30% to 90% and the facility temperature could be more than 10 K higher in one test compared to 

another. Using the performance models described later in this paper these, uncontrolled, variations in 

the ambient conditions produce changes in the turbine work of up to 0.7% when compared to dry air 
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on a standard day, Table 1. Further, a systematic error of up to 0.45% would be introduced if the 

bellmouth calibration did not include the change in the gas constant due to humidity.  

The tolerances required for current experiments dictate that the following four steps must be 

addressed when there are uncontrolled quantities. Firstly, the most appropriate forms for the non-

dimensional quantities need to be identified. Secondly, a reliable model for the working fluid, in this 

case humid air, is necessary. Thirdly, the controlled quantities must be at the appropriate operating 

values. Finally, a reliable methodology is required to account for the uncontrolled quantities not being 

at the datum values. 

Wells and McGrew [1] discussed the effects of different working fluids. Berdanier et al. [2] 

used a sophisticated model for humid air properties and Cumpsty and Marquis [3] presented a simple 

model for real gas effects. Rusch and Casey [4] identified the full range of independent variables 

involved for compressible flow through turbomachines. However, other than Berdanier et al., there 

has been little published on which of the several forms of the relevant non-dimensional quantities are 

the most appropriate, nor publications commenting on the sizes of compressibility effects in low-

speed facilities. 

Paper outline 

Dimensional analysis will be presented to determine that there are five independent non-

dimensional quantities relevant to turbine performance. The experimental facility will then be 

described and the data acquisition techniques justified. A set of baseline performance experiments 

will be presented to demonstrate that the turbine work coefficient can vary by 0.2% within a single 

day even when the flow coefficient and Reynolds number are held fixed. Models for turbine 

performance and humid air will be presented and examined to identify the appropriate forms for the 

uncontrolled non-dimensional quantities. These models, along with one for the effects of tip leakage, 

will be used to show that changes in the turbine work during the baseline experiments correspond to 

the variation in the uncontrolled quantities. 

A methodology, using a best-fit approach, will be described to account for the variations in 

the uncontrolled non-dimensional quantities provided that a family of directly related data is 
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available. The methodology is then extended to performance maps and CFD calculations. Finally, 

implications for high-speed turbomachines will be discussed. 

Dimensional Analysis 

For reliable experiments the number and form of the independent non-dimensional quantities 

that determine the turbine performance are required. For this analysis the dependent variable 

considered is the stagnation enthalpy drop across the turbine, 0∆h . The fluid dynamic conditions can 

be characterised by the stagnation pressure, stagnation temperature and the axial velocity at the 

reference plane, 0,refP , 0,refT and ,x refv , respectively, along with the mid-span blade speed, U . The 

properties of the working gas (including humidity) are characterised by the dynamic viscosity, µ , 

specific heat capacity at constant pressure, pc , and the gas constant, R . For geometrical similarity, 

one length is required and is chosen to be the axial chord of the first stator, xc . However, the clearance 

gaps over the rotor and under the stator vary with temperature so there is another relevant length, gap. 

Therefore the turbine performance can be expressed as: 

( )0 0, 0, ,, , , , , , , ,ref ref x ref p xh fnc P T v U c R c gapµ∆ =      (1) 

There are ten variables in total which can be expressed using four base dimensions (mass, length, time 

and temperature) so from Buckingham’s Pi theorem there are expected to be at least six non-

dimensional quantities. A suitable form for the non-dimensional relationship is:  

( )0

2
, , , ,

h
fnc Re b g c

U
φ

∆
=        (2) 

The first two non-dimensional quantities are the flow coefficient and the Reynolds number which are 

defined as: 

,x refv

U
φ =  and  

0, , 3( / cos )ref x ref xv c
Re

ρ α

µ
=     (3) 

These are the quantities that are traditionally quoted for low-speed experiments. The remaining three 

non-dimensional quantities have been chosen to have the following forms: 

0,p ref

U
b

c T
=   

p
c

g
R

=       
gap

c
span

=     (4) 
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The appropriate form of the non-dimensional blade speed, b, and the gas expansion, g, are identified 

by examining the equations in the compressible polytropic model given in Appendix 1. It is important 

that the non-dimensional blade speed includes pc  rather than Rγ . 

For convenience, the representative stator and rotor leakage gaps has been non-

dimensionalised by the blade span. Usually the non-dimensional clearance, c, is taken to be a constant 

and not explicitly included in the analysis. However, it was observed to be a function of temperature 

in this facility. Therefore, it is necessary to include the non-dimensional clearance as an independent 

non-dimensional quantity. 

Experimental Facility 

The recently rebuilt Peregrine facility is a two-stage, low-speed turbine which includes 

representative rotor tip and stator hub leakage paths and cavities, Fig. 2. The blade aerodynamics 

correspond to current aero-engine technology for low pressure turbines and are summarised in Table 

2. Both stator rows are designed to produce similar exit flow angles. However, the first stator has 

axial inlet flow so it has lower aerodynamic loading. The two rotor rows have identical geometry. 

The experimental facility has a volumetric flow rate of approximately 20 m
3
/s so it is 

generally operated with the external laboratory doors open. Therefore the ambient conditions are 

uncontrolled as pre-conditioning of the inlet flow is impractical. An inlet bellmouth is used to 

measure the inlet flow rate and there is a grid at the start of the parallel section to produce a 

representative level of turbulence intensity of approximately 4%. The turbine shaft is fitted with a 

torque meter and uses a step-up gearbox to drive an eddy current brake which absorbs the output 

power. The air flow is drawn through the facility by a variable speed, 315 kW, centrifugal fan. 

A close-up meridional view of the working section is shown in Fig. 2b. There are four Kiel 

probes and a thermocouple at the reference plane (Ref), located approximately half a span upstream of 

the first stator, which are used to define the reference conditions to non-dimensionalise the 

measurements. There are seven measurement planes where spanwise and circumferential traverses 

can be undertaken. The circumferential range is three stator pitches at planes 1 to 6 and five stator 

pitches at plane 7. The circumferential extent is illustrated in Fig. 2c by the turquoise and blue sectors, 
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respectively. There are also eight self-aligning Pitot probes which are distributed across the span and 

around the circumference at the exit of the turbine (illustrated in green in Fig. 2c). 

The current applied to the eddy current brake and the speed of the centrifugal fan are 

computer controlled to maintain the required flow coefficient (defined at the reference plane) and 

Reynolds number (defined using the Stator axial chord). To do this, the facility telemetry provides the 

control system with real-time details of the ambient conditions along with bellmouth pressure drop 

and shaft speed. 

A key feature of the control system is that it contains a simple model for humid air (details in 

Appendix 2). Once the gas constant for the ambient conditions has been determined, the flow through 

the turbine is modelled as a perfect gas. Whilst this is not the most sophisticated modelling approach 

for humid air, it is sufficient because the temperature drop through the turbine is approximately 2 K. It 

should be noted that the bellmouth calibration uses a time varying value for the gas constant which 

depends on the ambient conditions. 

During the commissioning of the experimental facility both the control system and facility 

hardware were extensively refined to minimise the variation of the flow coefficient and Reynolds 

number during operation. For example, by undertaking a time-accurate simulation of both the 

aerodynamics of the facility and the response of the control system, using the Peregrine Unsteady 

Aerodynamic Model (PUAM) [5], a fluid dynamic coupling between the exit swirl from the turbine 

affecting the performance of the downstream centrifugal fan was identified. The fluid dynamic 

coupling was eliminated by installing a honeycomb upstream of the centrifugal fan which both 

improved the steadiness of the operating point (fractional noise reduced by 60%) and increased the 

maximum Reynolds number that could be achieved by 8% (eliminated bulk co-swirl entering the fan). 

During the experiments, data is acquired from the facility control computer, for the torque, 

speed, mass flow rate etc., and from the pressure transducers over a one second interval. This is 

referred to as a one-second sample. The experimentally determined fractional noise (expressed as 

σ µ ) for a one-second sample are listed in Table 3. 

Selection of the number of samples, N 
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The majority of measurements would be expected to lie between ±3σ so to achieve 

repeatability to within 0.1% the fractional noise (σ µ ) must be of the order 0.01%.   

For the controlled quantities, flow coefficient and Reynolds number, the factional noise in a 

one-second sample, although repeatable, is too large, see Table 3. Provided that the noise is 

statistically independent, the fractional noise can be reduced by taking multiple one-second samples 

(averaging over a longer time). The number of samples, N, required can be estimated using: 

1sec

1

N samples
N

σ σ

µ µ

  
=  

  
      (5)  

This has been experimentally confirmed by examining the average value of the controlled 

independent quantities for repeated experiments with different numbers of one-second samples, see 

Fig. 3. If N ≥ 100 the fractional noise should be less than 0.01% in the controlled quantities. The noise 

bandwidth, determined by an autocorrelation, for the flow coefficient and Reynolds number is about 

five seconds. 

For dependent quantities such as the work coefficient and efficiency the fractional noise is 

also too large and is not experimentally repeatable, see Table 3. This is because variations in the 

uncontrolled quantities, b, c and g, introduce effects which are not statistically independent. For 

example, with reference to Fig. 1, taking more measurements for the black geometry may reduce the 

fractional noise but will not necessarily improve the comparison with the red geometry as the change 

in the uncontrolled quantity, b, behaves like a “bias”. 

If there were no uncontrolled independent quantities then it may be possible to use a 

sensitivity analysis to estimate the fractional noise in the dependent quantity from the independent 

quantity. For example, for incompressible flow, the stage loading can be expressed as: 

( )3 4tan tan 1rel

stgψ φ α α= − −      (6) 

Evaluating the above, using data from Table 2, gives: 

1.50
δψ δφ

ψ φ
=   so  1.50

ψ φ

σ σ

µ µ

  
=  

  
     (7) 
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The above would suggest that if the fractional noise in the flow coefficient were 0.01%, then the flow 

coefficient should be repeatable to 0.06% (assuming 3σ± ) and therefore the work coefficient ought to 

be repeatable to within 0.09%. 

Baseline Performance Experiments 

To investigate the apparent lack of repeatability of the measurements, a set of twenty-seven 

consecutive baseline performance experiments were undertaken. The baseline configuration is defined 

as the controlled quantities at the design operating values and the same nominal geometry. The 

facility had been operating for over an hour before the first baseline performance experiment was 

undertaken. In an attempt to minimise the variation in the measured quantities, each individual 

baseline performance experiment involved averaging 600 one-second samples and so took ten 

minutes.  

The fractional variation in the flow coefficient and Reynolds number for the twenty-seven 

baseline experiments are shown in Fig. 4. The observed fractional noise in the controlled quantities is 

less than 0.0014% (see Table 4). This agrees well with the values estimated using Eqn. (5) with 

N=600 (also shown Table 4). From Eqn. (7), the fractional noise in the work coefficient ought to be 

approximately 0.002%. This suggests that the turbine operating point ought to be repeatable for the 

baseline performance experiments. 

The turbine work coefficient measured during the baseline performance experiments are 

shown in Fig. 5. There is a gradual decrease during the latter part of the day and an overall peak to 

peak variation of 0.2%. The accuracy of the facility instrumentation cannot explain the observed 0.2% 

variation. Therefore, there must be another cause for the lack of experimental repeatability. 

Cause of Lack of Repeatability 

The turbine control software examines the ambient conditions in real-time and controls the 

flow coefficient and Reynolds number at the required values, see Fig. 4. The three remaining 

independent non-dimensional quantities (b, g and c) are uncontrolled and their values depend on the 

ambient conditions. The duration of each baseline performance experiment is ten minutes so, provided 

that the ambient conditions do not vary dramatically, it is appropriate to examine just the average 
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value of the three uncontrolled non-dimensional quantities in each experiment. These are shown in 

Fig. 6. Clearly the values vary during the baseline performance experiments. 

To show that the observed variations in the uncontrolled quantities are large enough to cause 

the lack of repeatability in the turbine work coefficient, shown in Fig. 5, the sensitivities of the turbine 

work coefficient to each of the uncontrolled quantities are required. These sensitivities will be 

obtained by applying models for the effects of non-dimensional blade speed, gas properties and non-

dimensional clearance on the turbine work. The advantage of examining the turbine work is that it is 

primarily an inviscid process so it can be modelled without having to introduce empirical viscous 

correlations. 

Compressible Polytropic Turbine Model 

The work extraction for a single stage turbine with flow at a constant radius, is derived in 

Appendix 1, see Fig. 2b for locations. The stage 1 loading is given by Eqn. (A1.1): 

0 3 4
3 42

tan tan 1relx x
stg

h v v

U U U
ψ α α

∆ 
= = − − 

 
     (8) 

The above equation shows that the stage loading is primarily a function of the non-dimensional axial 

velocity at stator and rotor exit. By continuity, the axial velocity is only affected by the density ratio 

which is closely related to the stagnation temperature ratio which is given by Eqn. (A1.6): 

2
204

0, 0,

1 1stg stg

ref p ref

T U
b

T c T
ψ ψ= − = −      (9) 

The above equation, and all the other equations related to the temperature ratios, involve the non-

dimensional blade speed, b, defined by Eqn. (4). Therefore this is the appropriate non-dimensional 

quantity directly related to energy transfer. 

Traditionally, the performance of low-speed turbines is assumed to be essentially independent 

of the non-dimensional blade speed, b. This assumption can be examined by solving the equations in 

Appendix 1 for the two-stage turbine using Turbine Performance (TPER) [6]. The variation of the 

turbine work coefficient and the non-dimensional axial velocities through the blades rows are shown 

in Fig. 7 for a range of non-dimensional blade speeds. The incompressible assumption corresponds to 

zero non-dimensional blade speed. The nominal non-dimensional blade speed ( 0.0485exptb = ) is shown 
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on the figures and even though this corresponds to a blade Mach number of less than 0.1 there are 

clear signs of the effects of compressibility. 

Sensitivity to non-dimensional blade speed, b 

For the range of non-dimensional blades speeds encountered during the experimental 

programme, the fractional variation in the turbine work coefficient is shown in Fig. 8. One curve 

corresponds to an isentropic turbine and the other curve to a turbine with an efficiency of 90%. The 

effect of varying the non-dimensional blade speed is more significant at lower turbine efficiencies 

because the density drop through the turbine is larger. The calculations assumed dry air, fixed inlet 

stagnation temperature, no change in leakage gaps and both the flow coefficient and Reynolds number 

were at the design values (only the inlet stagnation pressure was varied).  

From Fig. 8 it is clear that the variation is primarily linear. The sensitivity of the turbine work 

coefficient to the variation in the non-dimensional blade speed are 4.04 and 4.46 (corresponding to the 

isentropic and 90% efficient turbine). 

Model for Humid Air 

A simple way to model humid air (mixture of water vapour and air) is the semi-perfect gas 

approach, ( )pc T . Whilst this has limitations, it is sufficiently general to demonstrate the effects of 

humidity without the need for extensive databases of real gas properties. The values and correlations 

used are listed in Appendix 2.  

For a non-reacting mixture at low pressure, Dalton’s Law for partial pressures states: 

,p vap vap vapP V m R T=& &   and  
,p air air airP V m R T=& &     (10) 

where the subscripts vap and air refer to the water vapour and air respectively. The pressure of the 

mixture is given by: 

, ,p vap p airP P P= +        (11) 

Combining Eqns (10) and (11) yields the appropriate gas constant for humid air: 

vap vap air air

hmd

vap air

m R m R
R

m m

+
=

+

& &

& &
      (12) 

The corresponding value for the specific heat capacity at constant pressure for humid air is given by: 
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, ,

,

vap p vap air p air

p hmd

vap air

m c m c
c

m m

+
=

+

& &

& &
     (13) 

A convenient way to quantify the partial pressure of the water vapour is by the definition of 

the relative humidity: 

, ( )p vap satRH P P T=      (14) 

where ( )satP T  is the saturated vapour pressure corresponding to the temperature of the humid air. The 

above equations can be rearranged to obtain: 

,

,

vap p vap air

air p vap vap

m P R

m P P R
=

−

&

&
         (15) 

Equations (12) and (13) show that it is the ratio vap airm m& &  (the absolute humidity) which 

determines the change in hmdR  and ,p hmdc  which are the gas properties relevant to turbomachinery. 

Although the saturation vapour pressure is typically less than 3% of an atmosphere, it is a strong 

function of temperature, Eqn. (A2.3). Hence vap airm m& &  depends strongly on the relative humidity and 

the ambient temperature. On most operating days there is less than 1% of water vapour in the humid 

air but, on hot humid days, it could be up to 2%. 

As observed by Berdanier et al. [2], because the fractional change in ambient pressure is quite 

small (typically ±2%), there is only a slight variation in the absolute humidity with ambient pressure 

(fixed temperature and relative humidity). 

Because the temperature drop through the turbine is about 2 K, the air and water vapour 

properties within the working section are assumed to be the same as the ambient. Equations (12) and 

(13) show that, provided condensation does not occur, the properties, hmdR  and ,p hmdc , do not change 

through the turbine and so the flow can be modelled as a perfect gas. 

Effects Which Must Be Included 

Humid air has a lower density than air. This is because the gas constant for water vapour is 

approximately 60% larger than that for air (Table 5) so Eqn. (12) shows that hmdR  increases with 

humidity. Therefore, at fixed temperature and pressure, the density of humid air changes by 

about -0.6% at 90% relative humidity compared to dry air. If this decrease in ambient density were 
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not accounted for in the bellmouth calibration the volumetric flow would be approximately 0.3% 

high. Using Eqns (6) and (7) the corresponding fractional increase in turbine stage loading would be 

0.45%. 

Sensitivity to non-dimensional gas expansion, g 

The sensitivity of the turbine work to the non-dimensional gas expansion, g, can be 

assessed using the compressible polytropic model. Note that the flow coefficient, Reynolds 

number, and the non-dimensional blade speed must be held fixed. The effects of /pg c R=  on 

the turbine work coefficient for the isentropic and 90% efficient turbine assumptions are 

shown in Fig. 9 and the sensitivity is 0.042. 

Model for tip-leakage 

Extending the tip-leakage model of Yoon et al. [7] to include both shrouded stator-hub and 

rotor-tip leakage flows on the output power of a turbine stage, Appendix 3, yields the following 

relationship: 

2 3

2 3

(3tan 2 tan ) 1

(tan tan ) 1

rel

leak

rel

leak

m

m

δψ δ φ α α

ψ φ α α

− −
= −

− −

&

&
    (16) 

where leakmδ &  is the representative variation in the leakage flow due the changes in the seal gaps as a 

consequence of thermal effects. For the turbine at design, the above becomes: 

3.23 leak

leak

m

m

δψ δ

ψ
= −

&

&
      (17) 

For a 50% reaction single-stage turbine with just rotor-tip leakage Yoon et al. estimated the constant 

of proportionality to be -1.84 and they measured a value of -1.95. Thus the larger value, -3.23, for the 

Peregrine turbine (52% reaction) which has both stator-hub and rotor-tip leakage is reasonable. 

In the experimental facility the casings rings are steel, the rotor disc assembly is aluminium 

and the blades are a polyurethane plastic. The combination of plastic blades and a 0.7 hub-to-tip ratio 

introduces an increased sensitivity of the size of the stator-hub and rotor-tip leakage gaps to the 

operating temperature. The resultant variation in the non-dimensional clearance, c=gap/span, is 

shown in Fig. 10. 
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Determining the relationship between the physical size of the leakage gap and the actual 

leakage mass flow rate is not straightforward. Here it will be estimated using Denton’s [8] simple 

model for leakage over or under a shrouded blade: 

1 1

cos

leak

exitseal

m gap

m span N

δ
δ

α


≈ 

 

&

&
      (18) 

where sealN  is the number of knife-edged seals and exitα  is the exit flow angle measured in the blade 

frame. 

Sensitivity to non-dimensional clearance, c 

By combining Eqns (17) and (18), the sensitivity of the turbine work to changes in non-

dimensional clearance is -9.64. 

Effect of the Uncontrolled Quantities 

In the previous sections, models have been used to estimate the sensitivity of the turbine work 

coefficient to changes in the non-dimensional blade speed, gas expansion and gap/span. These 

sensitivities are summarised in Table 6. However, to determine the size of the effect on the turbine 

work the sensitivity must be combined with the range over which the quantity varies. Therefore, the 

range of the uncontrolled non-dimensional quantities measured during the baseline performance 

experiments and the estimated effect on the turbine work coefficient are also listed in Table 6. 

The non-dimensional gas expansion is estimated to produce only a 0.001% change in turbine 

work. This is very small suggesting that the effects of humidity only need to be incorporated in to the 

bellmouth calibration. Both the non-dimensional blade speed and non-dimensional clearance are 

estimated to each produce at least a 0.1% variation in the turbine work. Therefore, if the effects 

combine they would match the observed variation of 0.2%. 

Accounting to a Common Datum 

In the previous section, it has been shown that the variation in the turbine work using 

sensitivities estimated from the models are comparable to those observed during the baseline 

performance experiments. Further, the analysis has also demonstrated that for small variations in the 

uncontrolled non-dimensional quantities a linearised analysis is possible, thus: 
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( , , )
∂ ∂ ∂

= + ∆ + ∆ + ∆
∂ ∂ ∂

i i i dtm i i ib g c b g c
b g c

ψ ψ ψ
ψ ψ     (19)  

i i dtmb b b∆ = −  etc.    (20) 

where ( , , )dtm dtm dtmb g c  are conveniently chosen datum values for the uncontrolled quantities, 

( / , / , / )b g cψ ψ ψ∂ ∂ ∂ ∂ ∂ ∂  are the sensitivities and dtmψ  is the corresponding (unknown) value of the 

turbine work coefficient. Therefore each of the baseline performance measurements can be expressed 

as: 

( , , )i i i i ib g cψ ψ ε= +      (21) 

where iψ  is the measured performance, ( , , )i i ib g cψ  is the idealised value associated with the given 

uncontrolled non-dimensional quantities and iε  is the (assumed random) experimental noise. If the 

sensitivities are known then it is possible to take the measured performance iψ  and account for the 

difference between the actual and datum values of the uncontrolled quantities. Thus: 

,i accounted i i i ib g c
b g c

ψ ψ ψ
ψ ψ

∂ ∂ ∂
= − ∆ − ∆ − ∆

∂ ∂ ∂
    (22) 

where ,i accountedψ  is the accounted value that would be expected if the all the uncontrolled non-

dimensional quantities had the required datum values and the measurement contained just the 

(random) experimental noise iε . 

Model sensitivities applied to the baseline data 

Using the estimated sensitivities obtained from the models (Table 6), the accounted values for 

each of the baseline performance experiments are shown in Fig. 11 (green). The measured, 

unaccounted, values are shown for comparison (reproduced from Fig. 4). Clearly, accounting the 

baseline performance experiments using the model sensitivities has improved the consistency of the 

turbine work. The peak-to-peak variation and fractional noise are summarised in Table 7. 

Best-fit sensitivities applied to the baseline data 

An alternative way to estimate the sensitivities is to use a best-fit approach. This is done by 

combining Eqns (19) and (21) to produce an expression for the (random) experimental noise iε  in 

terms of the unknown sensitivities: 
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i i dtm i i ib g c
b g c

ψ ψ ψ
ε ψ ψ

 ∂ ∂ ∂
= − + ∆ + ∆ + ∆ 

∂ ∂ ∂ 
    (23) 

Because the baseline performance experiments are expected to be equivalent (same notional geometry 

and operating point) they can be thought of as a directly related family of data. By solving the best-fit 

problem to minimise the total error: 

( )
2 2

i

family

Total Error ε= ∑       (24) 

it is possible, provided the family has more than four data points, to determine best-fit values for the 

unknowns: dtmψ  and the three sensitivities ( / , / , / )b g cψ ψ ψ∂ ∂ ∂ ∂ ∂ ∂ . These best-fit sensitivities are 

listed in Table 6 and the best-fit accounted values for the turbine work coefficient are plotted in Fig. 

11 (red). The best-fit sensitivities produce slightly more consistent data than the model sensitivities 

(see discussion). 

A more significant advantage to using the best-fit sensitivities, rather than those obtained 

from a model, is that any quantity can be accounted (whether or not a model is available) provided 

that there are sufficient directly related measurements to allow the best-fit technique. Thus best-fit 

accounting is a post-experiment technique. 

Accounting Turbine Performance Maps 

Accounting a single family of directly-related, repeated experiments involves only one datum for each 

of the uncontrolled non-dimensional quantities. However, when the performance map of the turbine is 

considered, i.e. for a range of flow coefficients and Reynolds numbers, there is a different non-

dimensional blade speed at each operating point. In such circumstances, for each Reynolds number, it 

is necessary to select a consistent datum for the uncontrolled non-dimensional quantities and use that 

datum to account the data accordingly. This is achieved by noting that the product of the flow 

coefficient and the non-dimensional blade speed is: 

0,

x

p ref

V
b

c T
φ =        (25) 
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which would be expected to be constant at each Reynolds number (and to be, obviously, related 

between the different Reynolds numbers). The appropriate datum at each individual flow coefficient 

is therefore defined as: 

( )dtm
dtm

b
b

φ

φ
=        (26) 

By using the above approach it is possible to best-fit account the efficiency curves which are 

shown in Fig. 12 for three Reynolds numbers over a range of flow coefficients. The fractional noise in 

the unaccounted and accounted data is shown by the red and yellow bands, respectively. Similar to 

previous demonstrations, the accounting approach produces a much more consistent performance 

map. The noise in the measurements is reduced by 60%, 50% and 40% for the 100%, 85% and 70% 

Reynolds number cases respectively. 

Accounting CFD Calculations 

CFD calculations were undertaken to investigate the aerodynamics of the flow through the 

two-stage turbine including fully meshed stator-hub and rotor-tip cavities. Both steady and unsteady 

calculations were undertaken using Turbostream [9] with the Spalart-Allmaras turbulence model. For 

the time-accurate calculations, a total of fourteen blade passages, three stator and four rotor rows in 

each stage, were included. The computational domain contained approximately 6
80 10×  cells and the 

calculations were undertaken on the Wilkes GPU cluster at the High Performance Computing Service 

at Cambridge University.  

The version of Turbostream used does not include a low-Mach number pre-conditioner so the 

time accurate calculations were run at double the non-dimensional blade speed of the experiments. 

The viscosity was adjusted to obtain the Reynolds number at the design flow coefficient. 

Comparisons between the experimental data and the steady and unsteady calculations at 

measurement plane 6 (Fig. 2b) are shown in Fig. 13. Clearly, both the steady and unsteady 

calculations are only in qualitative agreement with the measurements. This is due to the difference in 

the non-dimensional blade speed of the experiment compared to the computations. Figure 7b shows 

the axial velocities at each measurement plane for a range of non-dimensional blade speed using the 

compressible polytropic model (TPER [6]) and demonstrates the size of the discrepancy. It is possible 
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to apply an accounting methodology using information at the two values of the non-dimensional blade 

speed ( exptb  and 2cfd exptb b= × ). By using the ratio of the two values a scale factor can be determined 

and applied to the CFD axial velocity profiles. Similar scale factors are determined for the tangential 

velocity and the stagnation pressures. Consequently, the accounted CFD profiles are in much better 

agreement with the measurements.  

Considering the profiles in Fig. 13, it is clear that the accounted non-dimensional axial 

velocity matches very well with the measurements as the scale factor is primarily determined by 

continuity. It is clear that the unsteady calculation is better at capturing the endwall secondary flow 

features than the steady mixing plane approach. The accounted non-dimensional tangential velocity 

also matches quite well but, because it involves an assumption of fixed blade-frame relative flow 

angle it is not as good as the axial velocity. The accounted stagnation pressure profiles do not match 

exactly because the CFD calculation assumed a fully turbulent boundary layer which produced larger 

wakes than those measured. 

Generalisation to High-Speed Machines 

Although the experiments discussed within this paper have been undertaken on a low-speed 

facility, the requirement to account the data families stems from the changes in the ambient conditions 

affecting the uncontrolled non-dimensional quantities. Many high-speed turbine test facilities have an 

atmospheric inlet and pre-compress and post-compress the flow through the turbine test section. 

Consequently, such tests are also liable to be affected by changes in ambient conditions, especially the 

humidity. Extending the work discussed here indicates that some aspects of humidity need to be 

assessed in setting the turbine operating point whilst others, such as the change in the non-

dimensional gas expansion can only be addressed by post-test accounting a family data. Further, the 

form of the non-dimensional blade speed, b, given in Eqn. (4) appropriately includes the dependency 

on the real gas properties to correctly scale the work transfer. 

Discussion 

The first part of this paper has shown how variations in ambient conditions can affect low-

speed turbine performance through uncontrolled changes in three non-dimensional quantities. These 
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changes can be significant compared to the desired experimental accuracy and may previously have 

been attributed to a lack of repeatability. Further, it is apparent that the experimental facility never 

settles to a fixed operating point. 

The relationships between changes in the ambient conditions and the uncontrolled non-

dimensional quantities are summarised in Fig. 14. Also shown on the same figure is the expected 

variation in the turbine work coefficient associated with the range of ambient variations encountered 

during the experimental programme. The sizes are significant given the performance levels of current 

turbomachinery design. 

The best-fit accounting methodology developed within this paper permits the effects of the 

uncontrolled non-dimensional quantities to be eliminated from an experimental investigation provided 

that a family of directly related experiments can be undertaken. The best-fit approach is better than the 

one based on model sensitivities because reliable models may not be available (e.g. viscous 

dominated quantities). 

Comparing the values listed in Table 6 shows that the model and best-fit sensitivities agree 

well for the non-dimensional blade speed which is essentially an inviscid effect. The two sensitivities 

for the non-dimensional clearance are only roughly similar probably because viscous effects are 

important in determining the exact leakage through a seal. A further consideration is that the actual 

clearance gap had to be estimated by tracking the temperatures of the casings, blades and rotor 

assembly during the experiments. Each component has its own thermal time constant so, in the 

absence of direct gap measurements, it was necessary to undertake a time dependent thermal analysis 

(full details in Evans [10]). 

Although the sensitivities due to changes in the gas properties are very different, the actual 

effects on the turbine work are small. However, the way in which the gas properties are modelled 

within the control code does not include the variation of the dynamic viscosity with humidity, only the 

variation with temperature is included. Sengers and Kamgar-Parsi [11] give the dilute gas limit for 

dynamic viscosity of water vapour and when combined with a transport model for the viscosity of 

humid air, Mason and Saxena [12], there is a slight dependence on the absolute humidity at higher 
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temperatures. The major effect is still the dependency on temperature. However, further work is 

required. 

The robustness of the best-fit accounting technique depends on both the number of 

measurements within the directly related family and the relative position of the datum values 

compared to the experimental average. Ideally, the datum values should be within the experimental 

range. Therefore when planning an experimental investigation where there are uncontrolled quantities 

careful attention must be given to the required number of accounting parameters. 

Conclusions 

It is well established that the performance of low-speed turbines depends on the flow 

coefficient and Reynolds number. Usually these two non-dimensional quantities are controlled. This 

work has shown the following: 

• There are three additional non-dimensional quantities that can affect the performance of low-

speed turbines: the non-dimensional blade speed (b), gas expansion (g) and blade row seal 

clearance (c).  

• By examining the work transfer within a turbomachine, the appropriate form for the non-

dimensional blade speed is 0,p refb U c T= . This form includes 
pc  so any changes in the gas 

properties is correctly included within the work transfer (whereas the blade Mach number does 

not). 

• For an isentropic process of a perfect gas the appropriate form for the non-dimensional gas 

expansion, or compression, is 
pg c R= . The turbine model used in this paper assumed a 

polytropic process for irreversibility and consequently the above form is still appropriate. 

• For turbine facilities where the working fluid depends upon ambient conditions some or all of 

three additional non-dimensional quantities have values which are uncontrolled. Pre-heating, pre-

compression can provide control over some of the additional quantities. 

• For the low-speed experimental facility variations in ambient conditions affect the values of the 

three uncontrolled non-dimensional quantities. The variations in the uncontrolled non-
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dimensional quantities are sufficiently large to generate changes in the turbine performance which 

appear as lack of repeatability. 

• A post-experiment best-fit accounting methodology has been developed that can reduce the effect 

of the uncontrolled non-dimensional quantities on any turbine performance parameter provided a 

sufficient number of directly related repeat measurements are available. 

• The best-fit accounting methodology has been demonstrated and applied to baseline performance 

experiments, turbine performance maps. 

• It is also possible to use an accounting methodology on CFD calculations which have been 

undertaken at different non-dimensional blade speeds provided that a reliable turbine performance 

model is available. 
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Nomenclature 

 A   = annulus cross-sectional area 

 b  = non-dimensional blade speed, 0,p refU c T  

 c   = non-dimensional clearance, gap span  

 xc  = axial chord (first stator) 

 
pc  = specific heat capacity at constant pressure 

 ,s rf f  = stator-hub, rotor-tip leakage fraction 

 g   = non-dimensional gas expansion, 
pc R  
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 gap   = rotor tip and stator hub leakage gap 

 0h∆  = stagnation enthalpy drop 

 m&   = mass flow rate 

 
vap airm m& &  = absolute humidity 

 M  = molar mass 

 N = number of knife-edge seals  

 0,P P   = static, stagnation pressure 

 
pP  = partial pressure 

 ( / ) 1−q q  = fractional variation ( q  = mean) 

 R  = gas constant, Mℜ  

 Re  = Reynolds number, 
0, , 3( cos )ref x ref xv cρ α µ  

 RH  = relative humidity 

 ℜ   = gas constant ( 1 18.3144621 kJ kmol K− − ) 

 T , 0T   = static, stagnation temperature 

 U = blade speed at mid-span 

 xv , vθ  = axial, tangential velocity 

 V&  = volumetric flow rate 

 γ  = adiabatic index 

 
pη  = polytropic efficiency (static conditions) 

 ttη  = total-to-total efficiency 

 µ  = dynamic viscosity 

 ρ  = density 

 ( )σ µ  = fractional noise (standard deviation/mean) 

 φ   = flow coefficient, xv U  

 ψ   = stage loading coefficient, 2

0h U∆   
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Subscripts 

 air = air (dry) 

 hmd = humid mixture 

 ref = reference location (upstream of first stator) 

 vap = water vapour 

 1-7 = measurement plane (Fig. 2b) 
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Appendix 1: Compressible Turbine Model 

Using the numbering of the measuring planes shown in Fig. 2b an analytic model for the 

turbine stage loading will be described which includes the effects of compressibility and the necessary 

perfect gas properties. The equations will then be examined to determine the appropriate choice for 

the two non-dimensional quantities which characterise the blade speed and gas expansion 

respectively. 

The stage 1 loading can be written as: 

0 3 4
3 42

tan tan 1relx x
stg

h v v

U U U
ψ α α

∆ 
= = − − 

 
     (A1.1)  

Applying continuity between the reference location and each measurement plane yields: 

,3

3 3 3 3

= =
x ref ref ref ref refx

v A Av

U U A A

ρ ρ
φ

ρ ρ
 etc.    (A1.2) 

The density ratio at each measurement plane is affected by the efficiency of the turbomachine. The 

static-to-static polytropic efficiency, pη , is a convenient way of including this effect: 

1
( 1)

0,

3 3 0,

p
ref ref ref

ref

T T

T T

γ

γ ηρ

ρ

−
−

=  
 

   etc.   (A1.3) 

All the temperature ratios can be expressed as follows: 

2 2 2
, 2

0, 0, 0,

1 1
1 1

2 2

ref x ref

ref p ref p ref

T v U U

T U c T c T
φ


= − = −

 
   (A1.4) 

2 2

3 3

2

0, 3 0,

1 1
1

2 cos

x

ref p ref

T v U

T U c Tα


= −  

 
   (A1.5) 

The work extraction across the rotor yields: 

2

04

0, 0,

1 stg

ref p ref

T U

T c T
ψ= −      (A1.6) 

so: 

2 2

4 4 4
42

0, 4 0,

1 1 1
1 tan

2 cos 2

relx x
stg rel

ref p ref

T v v U

T U U c T
ψ α

α

 
= − + + +      

    (A1.7) 
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Equations (A1.1) to (A1.7) determine the turbine operating point (assuming that the efficiency, areas 

and flow angles are known). In these equations the blade speed and gas properties occur in the 

following two non-dimensional quantities: 

0,p ref

U
b

c T
=  and 

1

pc
g

R

γ

γ
= =

−
     (A1.8) 

The non-dimensional blade speed, b, occurs in all the energy Eqns (A1.4) to (A1.7) and the non-

dimensional gas expansion, g, appears in the isentropic and polytropic equations, (A1.3). 

 

Appendix 2: Humid Air 

The expressions used to determine the properties of humid air when modelled as a perfect gas 

are listed in Table 5. Air and water vapour are modelled as a semi-perfect gas with the following 

specific heat capacity at constant pressure: 

1 1

, 1004.27 0.0423( 288.15) J kg Kp airC T
− −= + −     (A2.1) 

1 1

, 1862.21 0.210( 288.15) J kg Kp vapourC T
− −= + −     (A2.2) 

where T is in Kelvin and the data have been derived by curve-fitting data from [13]. 

From Buck [14], a correlation for saturation pressure is: 

7.5

237.3
610.78 10

c

c

T

T

satP


 + = ×
      (A2.3) 

where cT  is in degrees Celsius. Although this formulation is optimised for 0-100 C
o

, it is sufficiently 

accurate for -5 C
o

. 

The form of Sutherland’s Law used for the dynamic viscosity of air is: 

1.5

6 291.15 120.0
18.27 10

120.0 291.15
air

T

T
µ − +   

= ×   
+  

    (A2.4) 

Appendix 3: Leakage Model 

Here a simple control volume mixing analysis approach following that developed by Yoon et 

al. will be described with reference to Fig. 15. 
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If sf  is the fraction of the mass flow leaking under the stator hub-shroud then, assuming 

incompressible flow, the axial velocity at the stator exit is: 

, (1 )x withleakage sv U fφ= −       (A3.1) 

The exit tangential velocity of the flow through the stator is: 

3, 3(1 ) tanwith leakage sv U fθ φ α= −     (A3.2) 

If the stator hub-shroud leakage re-enters with zero tangential velocity, then the total " "mvθ&  

downstream of the stator is: 

3" " (1 ) (1 ) tans smv f m U fθ φ α= − × −& &     (A3.3) 

However, if rf  is the fraction of mass flow passing over the rotor tip-shroud, then the " "mvθ&  that 

passes over the tip is: 

3(1 ) tanr sf m U fφ α× −&      (A3.4) 

Thus the " "mvθ&  that enters the rotor passage is: 

3" " (1 ) (1 ) tans r smv f f m U fθ φ α= − − × −& &     (A3.5) 

The axial velocity at the rotor exit is: 

, (1 )x withleakage rv U fφ= −       (A3.6) 

so the exit tangential velocity of the flow through the rotor is:  

4, 4(1 ) tan rel

with leakage rv U f Uθ φ α= − +     (A3.7) 

Assuming that the stator hub-shroud leakage re-enters the mainstream with zero tangential velocity 

then the " "mvθ&  that leaves the rotor passage is: 

( )4" " (1 ) (1 ) tan rel

r rmv f m U f Uθ φ α= − × − +& &    (A3.8) 

Combining Eqns (A3.5) and (A3.8) yields  

( )2

0 3 4(1 ) (1 ) tan (1 ) (1 ) tan 1rel

s r s r rh U f f f f fφ α φ α∆ = − − − − − − +
 

Assuming that s rf f f= =  is small, then:  

( ) ( )2

0 3 4 3 4tan tan 1 3tan 2 tan 1rel rel
h U fφ α α φ α α ∆ = − − − − −    (A3.9) 
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Tables 

Table 1:  Effect of ambient variations on the turbine work compared to dry-air on a standard day (all 

at design flow coefficient and Reynolds number). 

 Work Change 

Non-dimensional blade speed  ±3% ±0.17% 

2% absolute humidity ( pc R   3.5 to 3.51) +0.01% 

+10 K causing 0.15% gap span  closure +0.71% 

Ignoring change in R affecting bellmouth +0.45% 

 

Table 2: Aerodynamic design parameters of LP turbine. 

Number of stages 2 

Mean radius 0.6477 m 

Hub to tip ratio 0.7 

Design flow coefficient (both stages) 0.822 

Design Reynolds number 148700 

Design stage reaction (both stages) 0.52 

Design stage loading (both stages) 2.02 

Nominal blade Mach number 0.076 

Nominal non-dimensional blade speed 0.0485 

Nominal rotational speed 379 rpm 

Nominal volumetric flow rate 19.7 m3s-1 

Number of blades: stator, rotor (both stages) 84, 112 

Stator exit flow angle (mid-span) 61.12° 

Rotor exit relative flow angle (mid-span) -61.75° 

Stator axial chord (mid-span) 50 mm 

Rotor axial chord (mid-span)  35 mm 

 

Table 3:  Fractional noise for a one-second sample. 

 Fractional noise ( )
1sec

σ µ  

Flow coefficient, φ 0.05% (repeatable) 

Reynolds number, Re 0.04% (repeatable) 

Turbine work coefficient, ψ 0.08% (not repeatable) 

Total-to-total efficiency, ttη  0.10% (not repeatable) 

 

Table 4:  Fractional noise in the flow coefficient and Reynolds number for the baseline experiments. 

 φ Re 

Observed ( )σ µ  for N=600 0.0014% 0.0011% 

Estimated ( )σ µ  for N=600 0.0020% 0.0016% 

 

Table 5:  Values used for humid air model. 

 water vapour air 

Molar mass, M  118.0153 kg kmol−

 
128.9645 kg kmol−
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Gas constant, R 1 1461.522 J kg K− −

 
1 1287.057 J kg K− −  

 

Table 6:  Comparison of the model and the best-fit sensitivities of the turbine work coefficient and the 

resultant variation for the Baseline experiments. 

  Model Best-Fit 
 Range Sensitivity Variation Sensitivity Variation 

b 1.01×10-3 4.46 0.11% 4.15 0.10% 

g 4.83×10-4 0.042 0.001% -4.45 0.05% 

c 5.26×10-4 -9.64 0.13% -6.78 0.09% 

 

Table 7:  The range and fractional noise of the unaccounted and accounted turbine work coefficient 

using the model and the best-fit approaches. 

 Peak-to-peak 

max min( ) /ψ ψ ψ−   

Fractional noise 

( / )ψσ ψ   

 Actual Relative Actual Relative 

Measured 

unaccounted 
0.196% 100% 0.060% 100% 

Model 

sensitivity 
0.069% 35% 0.023% 38% 

Best-Fit 

sensitivity 
0.063% 32% 0.018% 30% 

 

Table 5:  Values used for humid air model. 

 water vapour air 

Molar mass, M  118.0153 kg kmol−

 
128.9645 kg kmol−

 
Gas constant, R 1 1461.522 J kg K− −

 
1 1287.057 J kg K− −  
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Figures 

 

Fig.1: Illustration of how an uncontrolled variation in the non-dimensional quantity, b, can affect the 

turbine work coefficient, ψ. The mean values, ψ , of the two data families gives an incorrect result. By 

accounting to a common datumb , the datumψ  values yield a reliable result. 
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Fig. 2: Diagrams of the experimental facility: (a) schematic overview, (b) the working section 

(meridional view) and (c) circumferential positions of instrumentation (downstream view). 
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Fig. 3: Reduction of the fractional noise in (a) flow coefficient and (b) Reynolds number, estimated 

assuming independent data and experimentally verified using multiple measurements.  

 

Fig. 4: Fractional variation of (a) flow coefficient (b) Reynolds number for the baseline experiments. 

Each experiment involves 600 one-second samples. 

 

Fig. 5: Variation of the measured turbine work coefficient for the baseline experiments (design ϕ and 

Re). Each experiment involves 600 one-second samples. 
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Fig. 6: Variation of the mean value of quantities during baseline experiments: (a) non-dimensional 

blade speed, (b) non-dimensional gas expansion and (c) non-dimensional clearance. 

 

Fig. 7: For the two-stage configuration, the effect of non-dimensional blade speed on (a) the turbine 

work coefficient and (b) the axial velocities. 
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Fig. 8: The fractional variation of the turbine work coefficient calculated for the range of non-

dimensional blade speed during the experimental programme. 

 

Fig. 9: The fractional change of the turbine work coefficient calculated for the range of non-

dimensional gas expansion during the experimental programme. 

 

Fig. 10: The variation in spangapc /=  for the range of facility temperature during the experimental 

programme. 
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Fig. 11: Comparison of the measured unaccounted turbine work coefficient with the accounted values 

using the model and best-fit sensitivities. 

 

Fig. 12: Measured and accounted variation of total-to-total efficiency with flow coefficient and 

Reynolds number; red = unaccounted, yellow = accounted. 
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Fig. 13: Spanwise profiles from the CFD calculations at double the experimental non-dimensional 

blade speed compared with accounted profiles and measurements. 

 

Fig. 14: Diagram showing the effect of the ambient conditions on the uncontrolled non-dimensional 

quantities and the size of the effect on the turbine work coefficient during the experimental 

programme. 
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Fig. 15: Control volume analysis to estimate the effect of gap/span on turbine performance. 
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