11,460 research outputs found
Downsizing a Great Observatory: Reinventing Spitzer in the Warm Mission
The Spitzer Space Telescope transitioned from the cryogen mission to the IRAC warm mission during 2009. This transition involved changing several areas of operations in order to cut the mission annual operating costs to 1/3 of the cryogen mission amount. In spite of this substantial cut back, Spitzer continues to have one of the highest science return per dollar ratio of any of NASA's extended missions. This paper will describe the major operational changes made for the warm mission and how they affect the science return. The paper will give several measures showing that warm Spitzer continues as one of the most scientifically productive mission in NASA's portfolio. This work was performed at the California Institute of Technology under contract to the National Aeronautics and Space Administration
Improved nanopatterning for YBCO nanowires approaching the depairing current
An improved nanopatterning procedure has been developed to obtain YBCO
nanowires with cross sections as small as 50x50 nm^2, protected by an Au
capping layer. To probe the effective role of the Au protecting layer, we have
measured the current-voltage characteristics and the resistive transition in
temperature of the nanowires. Critical current densities up to 10^8 A/cm^2 have
been achieved at T=4.2 K, approaching the theoretical depairing current limit.
The resistance, measured as a function of temperature close to Tc, has been
fitted with a thermal activated phase slip model, including the effect of the
gold layer. The extracted values of the superconducting coherence length and of
the London penetration depth give current densities consistent with the
measured ones. These results cannot be achieved with same nanowires, without
the Au capping layer.Comment: ASC 2012 conference contributio
Probing the evolution of molecular cloud structure: From quiescence to birth
Aims: We derive the probability density functions (PDFs) of column density
for a complete sample of prominent molecular cloud complexes closer than 200
pc. Methods: We derive near-infrared dust extinction maps for 23 molecular
cloud complexes, using the "nicest" colour excess mapping technique and data
from the 2MASS archive. The extinction maps are then used to examine the column
density PDFs in the clouds. Results: The column density PDFs of most molecular
clouds are well-fitted by log-normal functions at low column densities (0.5 mag
< A_v < 3-5 mag). However, at higher column densities prominent, power-law-like
wings are common. In particular, we identify a trend among the PDFs: active
star-forming clouds always have prominent non-log-normal wings. In contrast,
clouds without active star formation resemble log-normals over the whole
observed column density range, or show only low excess of higher column
densities. This trend is also reflected in the cumulative PDFs, showing that
the fraction of high column density material is significantly larger in
star-forming clouds. These observations are in agreement with an evolutionary
trend where turbulent motions are the main cloud-shaping mechanism for
quiescent clouds, but the density enhancements induced by them quickly become
dominated by gravity (and other mechanisms) which is strongly reflected by the
shape of the column density PDFs. The dominant role of the turbulence is
restricted to the very early stages of molecular cloud evolution, comparable to
the onset of active star formation in the clouds.Comment: 7 pages, 11 figures, accepted to A&A Letter
APM z>4 QSO Survey: Distribution and Evolution of High Column Density HI Absorbers
Eleven candidate damped Lya absorption systems were identified in 27 spectra
of the quasars from the APM z>4 survey covering the redshift range
2.83.5). High resolution echelle spectra (0.8A FWHM)
have been obtained for three quasars, including 2 of the highest redshift
objects in the survey. Two damped systems have confirmed HI column densities of
N(HI) >= 10^20.3 atoms cm^-2, with a third falling just below this threshold.
We have discovered the highest redshift damped Lya absorber known at z=4.383 in
QSO BR1202-0725. The APM QSOs provide a substantial increase in the redshift
path available for damped surveys for z>3. We combine this high redshift sample
with other quasar samples covering the redshift range 0.008 < z < 4.7 to study
the redshift evolution and the column density distribution function for
absorbers with log N(HI)>=17.2. In the HI column density distribution
f(N)=kN^-beta we find evidence for breaks in the power law, flattening for
17.221.2. The column density
distribution function for the data with log N(HI)>=20.3 is better fit with the
form f(N)=(f*/N*)(N/N*)^-beta exp(-N/N*). Significant redshift evolution in the
number density per unit redshift is evident in the higher column density
systems with an apparent decline in N(z) for z>3.5.Comment: To appear in MNRAS. Latex file (10 pages of text) plus 14 separate
postscript figure files. Requires mn.sty. Postscript version with figures
embedded is available at http://www.ociw.edu/~lisa/publications.htm
Evolution of Neutral Gas at High Redshift -- Implications for the Epoch of Galaxy Formation
Though observationally rare, damped Lya absorption systems dominate the mass
density of neutral gas in the Universe. Eleven high redshift damped Lya systems
covering 2.84 QSO Survey,
extending these absorption system surveys to the highest redshifts currently
possible. Combining our new data set with previous surveys we find that the
cosmological mass density in neutral gas, omega_g, does not rise as steeply
prior to z~2 as indicated by previous studies. There is evidence in the
observed omega_g for a flattening at z~2 and a possible turnover at z~3. When
combined with the decline at z>3.5 in number density per unit redshift of
damped systems with column densities log N(HI)>21 atoms cm^-2, these results
point to an epoch at z>3 prior to which the highest column density damped
systems are still forming. We find that over the redshift range 2<z<4 the total
mass in neutral gas is marginally comparable with the total visible mass in
stars in present day galaxies. However, if one considers the total mass visible
in stellar disks alone, ie excluding galactic bulges, the two values are
comparable. We are observing a mass of neutral gas comparable to the mass of
visible disk stars. Lanzetta, Wolfe & Turnshek (1995) found that omega_g(z~3.5)
was twice omega_g(z~2), implying a much larger amount of star formation must
have taken place between z=3.5 and z=2 than is indicated by metallicity
studies. This created a `cosmic G-dwarf problem'. The more gradual evolution of
omega_g we find alleviates this. These results have profound implications for
theories of galaxy formation.Comment: To appear in MNRAS. Latex file (4 pages of text) plus 3 separate
postscript figure files. Requires mn.sty. Postscript version with figures
embedded is available at http://www.ociw.edu/~lisa/publications.htm
CMOS array design automation techniques
A low cost, quick turnaround technique for generating custom metal oxide semiconductor arrays using the standard cell approach was developed, implemented, tested and validated. Basic cell design topology and guidelines are defined based on an extensive analysis that includes circuit, layout, process, array topology and required performance considerations particularly high circuit speed
HST/ACS weak lensing analysis of the galaxy cluster RDCS 1252.9-2927 at z=1.24
We present a weak lensing analysis of one of the most distant massive galaxy
cluster known, RDCS 1252.9-2927 at z=1.24, using deep images from the Advanced
Camera for Survey (ACS) on board the Hubble Space Telescope (HST). By taking
advantage of the depth and of the angular resolution of the ACS images, we
detect for the first time at z>1 a clear weak lensing signal in both the i
(F775W) and z (F850LP) filters. We measure a 5-\sigma signal in the i band and
a 3-\sigma signal in the shallower z band image. The two radial mass profiles
are found to be in very good agreement with each other, and provide a
measurement of the total mass of the cluster inside a 1Mpc radius of M(<1Mpc) =
(8.0 +/- 1.3) x 10^14 M_\odot in the current cosmological concordance model h
=0.70, \Omega_m=0.3, \Omega_\Lambda=0.7, assuming a redshift distribution of
background galaxies as inferred from the Hubble Deep Fields surveys. A weak
lensing signal is detected out to the boundary of our field (3' radius,
corresponding to 1.5Mpc at the cluster redshift). We detect a small offset
between the centroid of the weak lensing mass map and the brightest cluster
galaxy, and we discuss the possible origin of this discrepancy. The cumulative
weak lensing radial mass profile is found to be in good agreement with the
X-ray mass estimate based on Chandr and XMM-Newton observations, at least out
to R_500=0.5Mpc.Comment: 38 pages, ApJ in press. Full resolution images available at
http://www.eso.org/~prosati/RDCS1252/Lombardi_etal_accepted.pd
- …