15 research outputs found
Parsing and Evaluation. Improving Dependency Grammars Accuracy. Anà lisi Sintà ctica Automà tica i Avaluació. Millora de qualitat per a Gramà tiques de Dependències
Because parsers are still limited in analysing specific ambiguous constructions, the research presented in this thesis mainly aims to contribute to the improvement of parsing performance when it has knowledge integrated in order to deal with ambiguous linguistic phenomena. More precisely, this thesis intends to provide empirical solutions to the disambiguation of prepositional phrase attachment and argument recognition in order to assist parsers in generating a more accurate syntactic analysis. The disambiguation of these two highly ambiguous linguistic phenomena by the integration of knowledge about the language necessarily relies on linguistic and statistical strategies for knowledge acquisition.
The starting point of this research proposal is the development of a rule-based grammar for Spanish and for Catalan following the theoretical basis of Dependency Grammar (Tesnière, 1959; Mel’čuk, 1988) in order to carry out two experiments about the integration of automatically- acquired knowledge. In order to build two robust grammars that understand a sentence, the FreeLing pipeline (Padró et al., 2010) has been used as a framework. On the other hand, an eclectic repertoire of criteria about the nature of syntactic heads is proposed by reviewing the postulates of Generative Grammar (Chomsky, 1981; Bonet and Solà , 1986; Haegeman, 1991) and Dependency Grammar (Tesnière, 1959; Mel’čuk, 1988). Furthermore, a set of dependency relations is provided and mapped to Universal Dependencies (Mcdonald et al., 2013).
Furthermore, an empirical evaluation method has been designed in order to carry out both a quantitative and a qualitative analysis. In particular, the dependency parsed trees generated by the grammars are compared to real linguistic data. The quantitative evaluation is based on the Spanish Tibidabo Treebank (Marimon et al., 2014), which is large enough to carry out a real analysis of the grammars performance and which has been annotated with the same formalism as the grammars, syntactic dependencies. Since the criteria between both resources are differ- ent, a process of harmonization has been applied developing a set of rules that automatically adapt the criteria of the corpus to the grammar criteria. With regard to qualitative evaluation, there are no available resources to evaluate Spanish and Catalan dependency grammars quali- tatively. For this reason, a test suite of syntactic phenomena about structure and word order has been built. In order to create a representative repertoire of the languages observed, descriptive grammars (Bosque and Demonte, 1999; Solà et al., 2002) and the SenSem Corpus (Vázquez and Fernández-Montraveta, 2015) have been used for capturing relevant structures and word order patterns, respectively.
Thanks to these two tools, two experiments have been carried out in order to prove that knowl- edge integration improves the parsing accuracy. On the one hand, the automatic learning of lan- guage models has been explored by means of statistical methods in order to disambiguate PP- attachment. More precisely, a model has been learned with a supervised classifier using Weka (Witten and Frank, 2005). Furthermore, an unsupervised model based on word embeddings has been applied (Mikolov et al., 2013a,b). The results of the experiment show that the supervised method is limited in predicting solutions for unseen data, which is resolved by the unsupervised method since provides a solution for any case. However, the unsupervised method is limited if it
Parsing and Evaluation Improving Dependency Grammars Accuracy
only learns from lexical data. For this reason, training data needs to be enriched with the lexical value of the preposition, as well as semantic and syntactic features. In addition, the number of patterns used to learn language models has to be extended in order to have an impact on the grammars.
On the other hand, another experiment is carried out in order to improve the argument recog- nition in the grammars by the acquisition of linguistic knowledge. In this experiment, knowledge is acquired automatically from the extraction of verb subcategorization frames from the SenSem Corpus (Vázquez and Fernández-Montraveta, 2015) which contains the verb predicate and its arguments annotated syntactically. As a result of the information extracted, subcategorization frames have been classified into subcategorization classes regarding the patterns observed in the corpus. The results of the subcategorization classes integration in the grammars prove that this information increases the accuracy of the argument recognition in the grammars.
The results of the research of this thesis show that grammars’ rules on their own are not ex- pressive enough to resolve complex ambiguities. However, the integration of knowledge about these ambiguities in the grammars may be decisive in the disambiguation. On the one hand, sta- tistical knowledge about PP-attachment can improve the grammars accuracy, but syntactic and semantic information, and new patterns of PP-attachment need to be included in the language models in order to contribute to disambiguate this phenomenon. On the other hand, linguistic knowledge about verb subcategorization acquired from annotated linguistic resources show a positive influence positively on grammars’ accuracy.Aquesta tesi vol tractar les limitacions amb què es troben els analitzadors sintĂ ctics automĂ tics actualment. Tot i els progressos que s’han fet en l’à rea del Processament del Llenguatge Nat- ural en els darrers anys, les tecnologies del llenguatge i, en particular, els analitzadors sintĂ c- tics automĂ tics no han pogut traspassar el llindar de certes ambiguĂŻtats estructurals com ara l’agrupaciĂł del sintagma preposicional i el reconeixement d’arguments. És per aquest motiu que la recerca duta a terme en aquesta tesi tĂ© com a objectiu aportar millores signiflcatives de quali- tat a l’anĂ lisi sintĂ ctica automĂ tica per mitjĂ de la integraciĂł de coneixement lingĂĽĂstic i estadĂstic per desambiguar construccions sintĂ ctiques ambigĂĽes.
El punt de partida de la recerca ha estat el desenvolupament de d’una gramĂ tica en espanyol i una altra en catalĂ basades en regles que segueixen els postulats de la GramĂ tica de Dependèn- dencies (Tesnière, 1959; Mel’čuk, 1988) per tal de dur a terme els experiments sobre l’adquisiciĂł de coneixement automĂ tic. Per tal de crear dues gramĂ tiques robustes que analitzin i entenguin l’oraciĂł en profunditat, ens hem basat en l’arquitectura de FreeLing (PadrĂł et al., 2010), una lli- breria de Processament de Llenguatge Natural que proveeix una anĂ lisi lingĂĽĂstica automĂ tica de l’oraciĂł. Per una altra banda, s’ha elaborat una proposta eclèctica de criteris lingĂĽĂstics per determinar la formaciĂł dels sintagmes i les clĂ usules a la gramĂ tica per mitjĂ de la revisiĂł de les propostes teòriques de la GramĂ tica Generativa (Chomsky, 1981; Bonet and SolĂ , 1986; Haege- man, 1991) i de la GramĂ tica de Dependències (Tesnière, 1959; Mel’čuk, 1988). Aquesta proposta s’acompanya d’un llistat de les etiquetes de relaciĂł de dependència que fan servir les regles de les gramĂ tques. A mĂ©s a mĂ©s de l’elaboraciĂł d’aquest llistat, s’han establert les correspondències amb l’estĂ ndard d’anotaciĂł de les Dependències Universals (Mcdonald et al., 2013).
Alhora, s’ha dissenyat un sistema d’avaluaciĂł empĂric que tĂ© en compte l’anĂ lisi quantitativa i qualitativa per tal de fer una valoraciĂł completa dels resultats dels experiments. Precisament, es tracta una tasca empĂrica pel fet que es comparen les anĂ lisis generades per les gramĂ tiques amb dades reals de la llengua. Per tal de dur a terme l’avaluaciĂł des d’una perspectiva quan- titativa, s’ha fet servir el corpus Tibidabo en espanyol (Marimon et al., 2014) disponible nomĂ©s en espanyol que Ă©s prou extens per construir una anĂ lisi real de les gramĂ tiques i que ha estat anotat amb el mateix formalisme que les gramĂ tiques. En concret, per tal com els criteris de les gramĂ tiques i del corpus no sĂłn coincidents, s’ha dut a terme un procĂ©s d’harmonitzaciĂł de cri- teris per mitjĂ d’unes regles creades manualment que adapten automĂ ticament l’estructura i la relaciĂł de dependència del corpus al criteri de les gramĂ tiques. Pel que fa a l’avaluaciĂł qualitativa, pel fet que no hi ha recursos disponibles en espanyol i catalĂ , hem dissenyat un reprertori de test de fenòmens sintĂ ctics estructurals i relacionats amb l’ordre de l’oraciĂł. Amb l’objectiu de crear un repertori representatiu de les llengĂĽes estudiades, s’han fet servir gramĂ tiques descriptives per fornir el repertori d’estructures sintĂ ctiques (Bosque and Demonte, 1999; SolĂ et al., 2002) i el Corpus SenSem (Vázquez and Fernández-Montraveta, 2015) per capturar automĂ ticament l’ordre oracional.
Grà cies a aquestes dues eines, s’han pogut dur a terme dos experiments per provar que la integració de coneixement en l’anà lisi sintà ctica automà tica en millora la qualitat. D’una banda,
Parsing and Evaluation Improving Dependency Grammars Accuracy
s’ha explorat l’aprenentatge de models de llenguatge per mitjĂ de models estadĂstics per tal de proposar solucions a l’agrupaciĂł del sintagma preposicional. MĂ©s concretament, s’ha desen- volupat un model de llenguatge per mitjĂ d’un classiflcador d’aprenentatge supervisat de Weka (Witten and Frank, 2005). A mĂ©s a mĂ©s, s’ha après un model de llenguatge per mitjĂ d’un mètode no supervisat basat en l’aproximaciĂł distribucional anomenat word embeddings (Mikolov et al., 2013a,b). Els resultats de l’experiment posen de manifest que el mètode supervisat tĂ© greus lim- itacions per fer donar una resposta en dades que no ha vist prèviament, cosa que Ă©s superada pel mètode no supervisat pel fet que Ă©s capaç de classiflcar qualsevol cas. De tota manera, el mètode no supervisat que s’ha estudiat Ă©s limitat si aprèn a partir de dades lèxiques. Per aquesta raĂł, Ă©s necessari que les dades utilitzades per entrenar el model continguin el valor de la preposi- ciĂł, trets sintĂ ctics i semĂ ntics. A mĂ©s a mĂ©s, cal ampliar el nĂşmero de patrons apresos per tal d’ampliar la cobertura dels models i tenir un impacte en els resultats de les gramĂ tiques.
D’una altra banda, s’ha proposat una manera de millorar el reconeixement d’arguments a les gramĂ tiques per mitjĂ de l’adquisiciĂł de coneixement lingĂĽĂstic. En aquest experiment, s’ha op- tat per extreure automĂ ticament el coneixement en forma de classes de subcategoritzaciĂł verbal d’el Corpus SenSem (Vázquez and Fernández-Montraveta, 2015), que contĂ© anotats sintĂ ctica- ment el predicat verbal i els seus arguments. A partir de la informaciĂł extreta, s’ha classiflcat les diverses diĂ tesis verbals en classes de subcategoritzaciĂł verbal en funciĂł dels patrons observats en el corpus. Els resultats de la integraciĂł de les classes de subcategoritzaciĂł a les gramĂ tiques mostren que aquesta informaciĂł determina positivament el reconeixement dels arguments.
Els resultats de la recerca duta a terme en aquesta tesi doctoral posen de manifest que les regles de les gramĂ tiques no sĂłn prou expressives per elles mateixes per resoldre ambigĂĽitats complexes del llenguatge. No obstant això, la integraciĂł de coneixement sobre aquestes am- bigĂĽitats pot ser decisiu a l’hora de proposar una soluciĂł. D’una banda, el coneixement estadĂstic sobre l’agrupaciĂł del sintagma preposicional pot millorar la qualitat de les gramĂ tiques, però per aflrmar-ho cal incloure informaciĂł sintĂ ctica i semĂ ntica en els models d’aprenentatge automĂ tic i capturar mĂ©s patrons per contribuir en la desambiguaciĂł de fenòmens complexos. D’una al- tra banda, el coneixement lingĂĽĂstic sobre subcategoritzaciĂł verbal adquirit de recursos lingĂĽĂs- tics anotats influeix decisivament en la qualitat de les gramĂ tiques per a l’anĂ lisi sintĂ ctica au- tomĂ tica
ParTes. Test suite for parsing evaluation
This paper presents ParTes, the first test suite in Spanish and Catalan for parsing qualitative evaluation. This resource is a hierarchical test suite of the representative syntactic structure and argument order phenomena. ParTes proposes a simplification of the qualitative evaluation by contributing to the automatization of this task. © 2014 Sociedad Española para el Procesamiento del Lenguaje Natural.Postprint (published version
Suitability of ParTes test suite for parsing evaluation
Parsers have evolved significantly in the last decades, but currently big and accurate improvements are needed to enhance their performance. ParTes, a test suite in Spanish and Catalan for parsing evaluation, aims to contribute to this situation by pointing to the main factors that can decisively improve the parser performancePostprint (published version
Enhancing FreeLing Rule-Based Dependency Grammars with Subcategorization Frames
Despite the recent advances in parsing, significant efforts are needed to improve the current parsers performance, such as the enhancement of the argument/adjunct recognition. There is evidence that verb subcategorization frames can contribute to parser accuracy, but a number of issues remain open. The main aim of this paper is to show how subcategorization frames acquired from a syntactically annotated corpus and organized into fine-grained classes
can improve the performance of two rulebased dependency grammarsPostprint (published version
DiSeg: an automatic discourse segmenter for Spanish
Hoy en dĂa el análisis discursivo automático es un tema de investigaciĂłn relevante. Sin embargo, no existen analizadores del discurso para textos en español. El primer paso para desarrollar esta herramienta es la segmentaciĂłn discursiva. En este artĂculo presentamos DiSeg, el primer segmentador discursivo para el español que utiliza el marco de la Rhetorical Structure Theory (Mann y Thompson, 1988) y se basa en reglas lĂ©xicas y sintácticas. Describimos el sistema y evaluamos sus resultados con un corpus gold standard, obteniendo resultados prometedores.Nowadays discourse parsing is a very prominent research topic. However, there is not a discourse parser for Spanish texts. The first stage in order to develop this tool is discourse segmentation. In this work, we present DiSeg, the first discourse segmenter for Spanish that uses the framework of the Rhetorical Structure Theory (Mann and Thompson, 1988) and is based on lexical and syntactic rules. We describe the system and we evaluate its performance with a gold standard corpus, obtaining promising results.Parte de este trabajo ha sido financiado mediante una ayuda de movilidad posdoctoral otorgada por el Ministerio de Ciencia e InnovaciĂłn de España (Programa Nacional de Movilidad de Recursos Humanos de InvestigaciĂłn; Plan Nacional de InvestigaciĂłn CientĂfica, Desarrollo e InnovaciĂłn 2008-2011) a Iria da Cunha
Semantic annotation of nouns in Sensem corpus
El objetivo principal del proyecto es la anotación semántica de los sustantivos argumentales del corpus SenSem con los sentidos de WordNet. El objetivo último de la investigación es la adquisición de preferencias semánticas.The main goal of this project is the semantic annotation of argument nouns of SenSem corpus with synsets of WordNet. The final objective of research is the acquisition of semantic preferences.Esta investigación se ha llevado a cabo gracias a los proyectos FFI2008-02579-E/FILO y TIN2009-14715-C04 del Ministerio de Ciencia e Innovación
Consideraciones sobre la naturaleza de los núcleos sintácticos: hacia una representación sintáctica de dependencias
The task about defining linguistic criteria for parsing linguistic-based grammars allows to build coherent resources. The development of EsTxala and CaTxala, Spanish and Catalan dependency grammars for FreeLing environment (a set of Natural Language Processing tools), was carried out regarding a set of linguistic criteria previously designed, which was developed like an eclectic and critic resource by means of the main linguistic formalisms implemented in parsing, the Dependency Grammar and the Generative Grammar. The main aim of this repertoire is to facilitate the coherence and the consistency of syntactic analysis into the development task of parsing grammars.En el análisis sintáctico automático, la definiciĂłn de criterios lingĂĽĂsticos para gramáticas basadas en conocimiento lingĂĽĂstico permite de desarrollar recursos coherentes y consistentes. La construcciĂłn de EsTxala y CaTxala, dos gramáticas de dependencias del español y del catalán para FreeLing (un entorno de herramientas de Procesamiento del Lenguaje Natural), se ha llevado a cabo segĂşn el diseño previo de un repertorio de criterios eclĂ©ctico y crĂtico en relaciĂłn con algunos de los formalismos lingĂĽĂsticos implementados en el análisis automático del lenguaje, la Gramática de Dependencias y la Gramática Generativa. El objetivo de dicho repertorio es facilitar la coherencia y la consistencia de la representaciĂłn sintáctica en el desarrollo de gramáticas para el análisis sintáctico automático
Enhancing FreeLing Rule-Based Dependency Grammars with Subcategorization Frames
Despite the recent advances in parsing, significant efforts are needed to improve the current parsers performance, such as the enhancement of the argument/adjunct recognition. There is evidence that verb subcategorization frames can contribute to parser accuracy, but a number of issues remain open. The main aim of this paper is to show how subcategorization frames acquired from a syntactically annotated corpus and organized into fine-grained classes
can improve the performance of two rulebased dependency grammar
Suitability of ParTes test suite for parsing evaluation
Parsers have evolved significantly in the last decades, but currently big and accurate improvements are needed to enhance their performance. ParTes, a test suite in Spanish and Catalan for parsing evaluation, aims to contribute to this situation by pointing to the main factors that can decisively improve the parser performanc
Enhancing FreeLing Rule-Based Dependency Grammars with Subcategorization Frames
Despite the recent advances in parsing, significant efforts are needed to improve the current parsers performance, such as the enhancement of the argument/adjunct recognition. There is evidence that verb subcategorization frames can contribute to parser accuracy, but a number of issues remain open. The main aim of this paper is to show how subcategorization frames acquired from a syntactically annotated corpus and organized into fine-grained classes
can improve the performance of two rulebased dependency grammar