6,085 research outputs found
Model-reference adaptive control based on neurofuzzy networks
Model reference adaptive control (MRAC) is a popular approach to control linear systems, as it is relatively simple to implement. However, the performance of the linear MRAC deteriorates rapidly when the system becomes nonlinear. In this paper, a nonlinear MRAC based on neurofuzzy networks is derived. Neurofuzzy networks are chosen not only because they can approximate nonlinear functions with arbitrary accuracy, but also they are compact in their supports, and the weights of the network can be readily updated on-line. The implementation of the neurofuzzy network-based MRAC is discussed, and the local stability of the system controlled by the proposed controller is established. The performance of the neurofuzzy network-based MRAC is illustrated by examples involving both linear and nonlinear systems. © 2004 IEEE.published_or_final_versio
Self-tuning neurofuzzy control for nonlinear systems with offset
A self-tuning neurofuzzy controller with an ability to remove offsets is derived in this paper based on the self-tuning integrating controller derived for the local linear model. The training target for the proposed controllers is derived, and they can be trained by the simplified recursive least squares (RLS) method with a computing time that is linear instead of geometric in the number of weights in the network. Further, the simplified RLS method not only has the same convergence property as the RLS method, it also has a better ability in tracking varying parameters. The performance of the self-tuning neurofuzzy controller is illustrated by examples involving both linear and nonlinear systems.published_or_final_versio
Energy bands and Landau levels of ultracold fermions in the bilayer honeycomb optical lattice
We investigate the spectrum and eigenstates of ultracold fermionic atoms in
the bilayer honeycomb optical lattice. In the low energy approximation, the
dispersion relation has parabolic form and the quasiparticles are chiral. In
the presence of the effective magnetic field, which is created for the system
with optical means, the energy spectrum shows an unconventional Landau level
structure. Furthermore, the experimental detection of the spectrum is proposed
with the Bragg scattering techniques.Comment: To appear in Journal of Modern Optic
Genetic analysis of farmed and wild stocks of large yellow croaker Larimichthys crocea by using microsatellite markers
The large yellow croaker (Pseudosciaena crocea) is one of the most economically important mariculture fish species in China. In this study, the genetic diversity and relationship among a wild stock, four farmed stocks and a selectively bred strain of large yellow croaker were assessed by 14 microsatellite markers. A total of 108 different alleles were detected over all loci. The average number of allele per locus ranged from 5.57 to 7.93, with an average of 6.75; the observed and expected heterozygosity ranged from 0.572 to 0.665 and from 0.649 to 0.751, with an average of 0.621 and 0.694, respectively; the Shannon’s diversity index ranged from 1.34 to 1.64, with an average of 1.48. The selectively bred strain had the lowest genetic diversity; all farmed stocks showed a slight reduction of genetic variability contrasted with wild stock. All stocks suffered severe bottleneck. The pair-wise FST, the phylogenetic tree, the factor correspondence analysis and the model based clustering analysis revealed that, the Ningbo stock, which was from Zhejiang province, was different from the remaining stocks from Fujian province. This study suggested that (1) the farmed stocks were at relatively low level of genetic diversity compared with the wild stock; (2) samples from Ningbo investigated in this study have a distinct divergence with those from Fujian province; (3) there had emerged significant differentiation among farmed stocks.Key words: Pseudosciaena crocea, large yellow croaker, genetic structure, microsatellite markers
Highly reproducible SERS substrate based on polarization-free Ag nanoparticles decorated SiO2/Si core-shell nanowires array
SiO2/Si core-shell nanowires array coated with gap-rich silver nanoparticles were demonstrated as a highly reproducible surface-enhanced Raman scattering (SERS) substrate. SERS detection of a relative standard deviation of 8% for 10−4 M R6G with a spot size of ∼2 μm and 900 spots over an area of 150 × 150 μm2 was reported. The high reproducibility is ascribed to the polarization-independent electrical field distribution among three-dimensional nanowire structure with an optimized thickness of SiO2 shell layer.published_or_final_versio
Correlation between primary phases and atomic clusters in a Zr-based metallic glass
2010-2011 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
Urban Land Use Efficiency Under Resource-Based Economic Transformation—A Case Study of Shanxi Province.
Shanxi, one of China’s provinces, has been approved by the State Council as the only state-level comprehensive reform zone for resource-based economic transformation in 2010. Consequently, the implementation of National Resource-based Cities Sustainable Development Planning (2013–2020) and The State Council on Central and Western Regions Undertaking of Industrial Trans-formation Guide were also introduced. As a result, many agricultural lands were urbanized. The question is whether the transformed land was used efficiently. Existing research is limited re-garding the impact of the government-backed transformation of the resource-based economy, industrial restructuring, and urbanization on land use efficiency. This research investigates urban land use efficiency under the government-backed resource-based economy transformation using the Bootstrap-DEA and Bootstrap-Malmquist methods. The land use efficiency and land produc-tivity indexes were produced. Based on the empirical study of 11 prefectural cities, the results suggest that the level of economic development and industrial upgrading are the main determi-nants of land use efficiency. The total land productivity index declined after the economic reform was initiated. The findings imply that the government must enhance monitoring and auditing during policy implementation and evaluate the policy effects after for further improvement. With the scarcity of land resources and urban expansion in many cities worldwide, this research also provides an approach to determining the main determinants of land use efficiency that could guide our understanding of the impact of the future built environment.
Keywords: land use efficiency; land producti
Investigating the Impacts of Recommendation Agents on Impulsive Purchase Behaviour
The usage of recommendation agents (RAs) in the online marketplace can help consumers to locate their desired products. RAs can help consumers effectively obtain comprehensive product information and compare their candidate target products. As a result, RAs have affected consumers’ shopping behaviour. In this study, we investigate the usage and the influence of RAs in the online marketplace. Based on the Stimulus-Organism-Response (SOR) model, we propose that the stimulus of using RAs (informativeness, product search effectiveness and the lack of sociality stress) can affect consumers’ attitude (perceived control and satisfaction), which further affects their behavioural outcomes like impulsive purchase. We validate this research model with survey data from 157 users of RAs. The data largely support the proposed model and indicate that the RAs can significantly contribute to impulsive purchase behaviour in online marketplaces. Theoretical and practical contributions are discussed
Temperature-vacuum swing adsorption for direct air capture by using low-grade heat
Direct air capture (DAC) is a promising carbon mitigation technology and will likely be part of extensive carbon removal portfolio. Adsorptive DAC is an appropriate option for carbon capture to utilize low-grade heat because of its desirable regeneration temperature and adaptability to be integrated with renewables. Building indoor environment with CO2 concentrations above 1000 ppm provides another suitable scenario for DAC. Herein, DAC using temperature-vacuum swing adsorption (TVSA) is presented and analyzed by integrating various low-grade heat sources in buildings. An amine-functionalized metal organic framework is selected for process simulation, and the performance is compared with those using other sorbents. It indicates that amine-functionalized material has advantages in CO2 productivity and purity. A techno-economic analysis is carried out to explore the benefit of the proposed DAC in buildings. The results show that regeneration by heat pumps at 373 K is the most competitive solution and has 176.7 $·tCO2−1 of the levelized cost of DAC (LCOD). Compared with conventional energy supply, solutions with low-grade heat utilization in buildings could achieve lower carbon intensity and increase by 5.2–25.0% in net LCOD. These results will provide practical guidelines for DAC application with lower energy penalties and costs
- …