
Title Model-reference adaptive control based on neurofuzzy networks

Author(s) Liu, XJ; LaraRosano, F; Chan, CW

Citation Ieee Transactions On Systems, Man And Cybernetics Part C:
Applications And Reviews, 2004, v. 34 n. 3, p. 302-309

Issued Date 2004

URL http://hdl.handle.net/10722/43059

Rights Creative Commons: Attribution 3.0 Hong Kong License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37882363?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

302 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 34, NO. 3, JUNE 2004

Model-Reference Adaptive Control Based
on Neurofuzzy Networks

Xiang-Jie Liu, Felipe Lara-Rosano, and C. W. Chan

Abstract—Model reference adaptive control (MRAC) is a pop-
ular approach to control linear systems, as it is relatively simple to
implement. However, the performance of the linear MRAC deteri-
orates rapidly when the system becomes nonlinear. In this paper, a
nonlinear MRAC based on neurofuzzy networks is derived. Neu-
rofuzzy networks are chosen not only because they can approx-
imate nonlinear functions with arbitrary accuracy, but also they
are compact in their supports, and the weights of the network can
be readily updated on-line. The implementation of the neurofuzzy
network-based MRAC is discussed, and the local stability of the
system controlled by the proposed controller is established. The
performance of the neurofuzzy network-based MRAC is illustrated
by examples involving both linear and nonlinear systems.

Index Terms—Model-reference adaptive control, neurofuzzy
networks, nonlinear controller.

I. INTRODUCTION

THE MODEL reference adaptive control (MRAC) is pop-
ular in the area of self-tuning control [1]. In the MRAC,

the error between the reference model output and the real plant
output is used to adjust its parameters in order to control the
plant to follow the desired output from the reference model.
It has been demonstrated to be effective in controlling linear
plants, and hence has found numerous applications in process
control. In general, it performs better than conventional fixed-
parameter PID controller, as it can better adapt to changes in the
parameters of the plant, and therefore, has attracted numerous
attentions in control engineering. The linear MRAC performs
well when it is working around the operating point, where the
plant can be approximated by a linear model. However, as most
industry processes are highly nonlinear, nonminimum, and with
various types of uncertainties and load disturbances [2], the per-
formance of the linear MRAC may deteriorate, and suitable non-
linear control may have to be used.

Since neural networks can approximate any nonlinear func-
tions with arbitrary accuracy, they have been applied to develop
adaptive control of nonlinear systems [3]. Indirect adaptive con-
trol using neural networks is presented in [4]. In [5], the design
of a conventional MRAC has been extended to direct neural con-
trol for a class of nonlinear system with structural uncertainty.

Manuscript received July 6, 2001; revised July 21, 2003. This work was sup-
ported in part by the National Nature Science Foundation of China under Grant
69804003. This paper was recommended by Associate Editor J. Lee.

X.-J. Liu and F. Lara-Rosano are with Centro de Ciencias Aplicadas
y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico,
Mexico City, D.F. 04510, Mexico (e-mail: liu@aleph.cinstrum.unam.mx;
lararf@servidor.unam.mx).

C. W. Chan is with Department of Mechanical Engineering, The University
of Hong Kong, Hong Kong, China (e-mail: mechan@hkucc.hku.hk).

Digital Object Identifier 10.1109/TSMCC.2003.819702

Direct multilayer perceptron (MLP) model reference adaptive
control has been presented in [6] by comparison with Lyapunov
adaptive control. Also, fuzzy logic has been incorporated into
MRAC with fuzzy basis function being used to represent the
parameter information [7]. A robust adaptive law to adaptively
compensate for the modeling error introduced by fuzzy approx-
imation was proposed in [8].

Both fuzzy logic and neural networks belong to the class
of “model-free” modeling and control approach, and both
of them have their own advantages [9]. Fuzzy rules can be
expressed readily the expert knowledge into linguistic form,
while neural networks possess good learning ability, and
can approximate nonlinear functions with arbitrary accuracy.
Neurofuzzy networks are derived from fuzzy logic and neural
network, and therefore inherit the property of both fuzzy logic
and neural network [10], giving controllers developed based on
neurofuzzy networks the ability to incorporate expert knowl-
edge into the controller, and to be trained from experimental
data. Therefore, neurofuzzy networks provide a very useful
tool for developing nonlinear adaptive controllers. Further,
the neurofuzzy network-based nonlinear controller has the
advantage over conventional self-tuning controllers in that
once it is trained for certain operating points, no re-training
for those operating points is required. Also, the transition from
one local model to another is smooth. In contrast, conventional
self-tuning controllers have to be retuned every time when the
operating point is changed, as previously trained parameters
cannot be stored in the controller. This is also the main reason
for their inferior performance in controlling nonlinear systems.
Some of the earlier work included fuzzy neural networks
for nonlinear systems modeling [11], generalized minimum
variance (GMV) controller based on the neurofuzzy networks
using a simplified recursive least squares method [12] derived
from the local change property of neurofuzzy networks [13].

There are several implementation of neurofuzzy network
[10], such as the cerebella model articulation controller
(CMAC), associate memory network (AMN), and the radial
basis function (RBF) network. The AMN is one of the earliest
attempts to use neural networks to implement the desired map-
ping for fuzzy systems [9], and has been successfully applied
to problems like backing up a truck-and trailer [14] and target
tracking [15], where distinctive features such as modularity,
robustness, and adaptability have been demonstrated. B-spline
networks are a class of lattice AMN that uses univariate basis
functions as the membership function of input fuzzy variable
in the fuzzy linguistic statements. The multivariate fuzzy sets
are formed from the product operator representing the fuzzy
conjunction, which enables the networks to be interpreted as

1094-6977/04$20.00 © 2004 IEEE

LIU et al.: MRAC BASED ON NEUROFUZZY NETWORKS 303

a set of fuzzy rules. Therefore, by embodying both the quali-
tative and the quantitative approaches, these networks enable
heuristic information to be incorporated into and inferred from
the network, and allow fuzzy learning rules to be derived.

The objective of this paper is to derive a nonlinear MRAC
based on neurofuzzy networks. The proposed controller can be
interpreted as a direct self-tuning control. The online update
of the weights of the neurofuzzy network is derived, and the
local stability of the closed-loop system using the proposed
controller is established. Two simulation examples involving a
linear steam-boiler system and a nonlinear system are presented
to illustrate the implementation and the performance of the
proposed neurofuzzy network-based MRAC.

II. STRUCTURE OF MRAC

There are two main approaches to derive the MRAC: the
MIT approach and the Lyapunov approach. The basic structure
of MRAC is depicted in Fig. 1, where the state feedback gain
vector is denoted by , and the set
point weighting vector by .

In the MRAC, the design criterion is that the output of the
plant follows as close as possible to the output of a reference
model. In general, the control designed using this approach
can be expressed in the following form:

(1)

where is the reference input, is either the output or the
state of the system, and and are rational func-
tions in , the backward shift operator. Rewriting (1) gives

(2)

where is the input
vector and is the weight vector.
The gradient method can be used to update the weight . Con-
sider the following cost function:

(3)

The weight is adjusted proportional to the negative gradient
of

(4)

where is a positive constant. Equation (4) can also be inter-
preted as the self-tuning law for updating on-line, and is the
learning rate. If there are no a priori knowledge of the system,
then the initial value is chosen randomly. However, if some
a priori knowledge is available, can be suitably chosen
based on this information to ensure a fast convergence of .

The MRAC is now well developed and has found applica-
tions in many fields, especially when the system is linear and
time-invariant. For nonlinear systems, linear MRAC can only
be applied if the operating range is small, as it is unsuitable
for highly nonlinear systems. Popular approaches in controlling
highly nonlinear systems include the gain scheduling [16] and
the Takagi–Sugeno fuzzy controller [17]. In these approaches,
a series of local linear controllers are used. Another recent ap-
proach is to implement nonlinear controllers using neurofuzzy

Fig. 1. Structure of MRAC systems.

networks, which can be interpreted as a network consisting of
a series of linear local models designed for different operating
points of the nonlinear system [10], [12]. The implementation
of this class of controller using local linear MRAC is discussed
below.

III. NEUROFUZZY NETWORK IMPLEMENTATION OF MRAC ON

NONLINEAR PLANT

A. Family of Nonlinear Model

Consider the following input–output model for a class of dis-
crete nonlinear dynamical systems [4]:

(5)

where and are, respectively, the control and the
output, and are the known orders of the system,
is a sequence of independent identically distributed random
variables with zero mean and a variance of , and is a
smooth nonlinear function such that a Taylor series expansion
exists. It is assumed that

(6)

From (6), the Jacobian of exists. Rewriting (5) gives

(7)
The local linearized model of (5) at the selected operating

point is given as follows, which is used to design the linear
MRAC:

(8)

where and are polynomials in , the back-
ward shift operator, with the respective orders and , and
the coefficients of and are a function of the op-
erating point [18]. Let

... (9)

Equation (5) can be rewritten in state-space form as follows:

(10)

304 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 34, NO. 3, JUNE 2004

where is the state vector, and

...
. . .

...

...

B. Implementation of MRAC Using Neurofuzzy Networks

The block diagram for implementing the MRAC using a neu-
rofuzzy network is shown in Fig. 2. A schematic diagram of the
neurofuzzy network is shown in Fig. 3. The input of the net-
work consists of the state and reference input

, which is fuzzified using uni-
variate B-spline basis functions. The output of the network is a
linear combination of the weights and the fuzzified input. The
design of the B-spline neurofuzzy network involves specifying
the order of the univariate basis functions , the range of the
input and output variables, and the number of inner knots , or
simply the number of basis functions to be used in the fuzzifica-
tion process. Similar to neural networks, the weights of the neu-
rofuzzy networks can be trained from experimental data using,
for example, the gradient-descent method.

The advantage of using B-spline functions is that the output
of the B-spline function can be computed by a recurrence rela-
tionship for given and . In addition, they have the following
desirable properties [10].

1) The B-spline functions are defined on a bounded support
and the output of the basis function is compact and pos-
itive over its supports, i.e.,
and . Therefore, the B-spline
neurofuzzy network, stores information locally and can
be trained from local data, and also only a small number
of basis functions are involved in computing the output of
the network.

2) The basis functions form a partition of unity, giving that
the sum of the output of the basis functions is always one,
i. e., .

3) The basis functions are members of the continuity class
, such that and its derivatives up

to the order exist on .
4) The upper and lower bounds of the output of the neuro-

fuzzy network are finite.
As the output of B-spline neurofuzzy network can be con-

sidered as a weighted sum of the outputs of several linear self-
tuning controllers designed at several selected operating points,
it can also be interpreted conceptually as a nonlinear self-tuning
controller. As the fuzzy sets in the neurofuzzy networks are
distributed over the neighborhood regions, the control obtained
from the neurofuzzy controller is generally smooth.

Fig. 2. MRAC implemented by neurofuzzy networks.

Fig. 3. B-spline neurofuzzy network.

The neurofuzzy network shown in Fig. 3 is derived from a set
of fuzzy rules [10], an example of which is given as follows:

Ri: IF is negative large, , and is
negative medium, and is positive medium, , and

is positive medium
THEN is positive medium;

The output of the network is the sum of the inference
from these rules, given as

(11)

where is the input vector

(12)

and where is the weight vector of the
network and is the total number of weights in the network.
For a given order of the basis functions and the number of
inner knots is given by

(13)

The multivariate basis function is the transformed input
vector obtained by the tensor products of the output of the
univariate B-spline basis functions , i.e.,

(14)

where is the dimension of the input vector .
From (14), the properties of the univariate B-spline basis func-
tions also apply to the multivariate B-spline basis functions.

LIU et al.: MRAC BASED ON NEUROFUZZY NETWORKS 305

Fig. 4. Multivariate B-spline basis function.

Since these functions are defined on a hyperrectangle, the output
of the network is also bounded, and the output is positive in-
side this domain, but is zero otherwise. An example of a multi-
variate basis function, which is formed from two second-order
univariate basis function is shown in Fig. 4.

From (11), the control obtained from the neurofuzzy
network can also be expressed as

(15)

C. Training of the Neurofuzzy Networks

The training of the neurofuzzy network involves adjusting the
importance of the relevance fuzzy rule, or the weights of the
network. For the cost function given by (3), the weights in the
network can be updated using (4), given as follows:

(16)

where

(17)

From the compactness property of B-spline basis functions,
the input space of the neurofuzzy network is separated into
regions [12], where is given by

(18)

where and are, respectively, the number of inner knots
for and . Only one region is activated each time by the
input , giving the elements of the fuzzified input associated
with the region that has been activated are nonzero, whilst those
in the other regions are zero. The number of nonzero elements
in is given by [12]

(19)

where and are, respectively, the order of the basis func-
tions for and . As an illustration of this property, con-
sider a network with two input variables, as shown in Fig. 5.
Seven linguistic variables are used in the first input , and
six in the second variable . These linguistic variables are de-
noted respectively by “positive large (PL)”, “positive medium
(PM)”, “positive small (PS)”, “zero (O)”, “negative small (NS)”,
“negative medium (NM)”, “negative large (NL)”. Second-order
B-spline basis functions are chosen as the membership func-
tions of these linguistic variables. In this example,

Fig. 5. Local change property of neurofuzzy networks.

Fig. 6. Multivatiate membership function.

and . From (13), the number of weights in the
network is 42, whilst from (18), the number of regions is 30.
As indicated by the shaded region in Fig. 5, four fuzzy rules are
activated each time. The antecedent of this four rules could be
expressed as follows:

• if is “negative small” and is “negative small”;
• if is “negative small” and is “positive small”;
• if is “zero” and is “negative small”;
• if is “zero” and is “positive small.”

The multivariate membership functions are shown in Fig. 6.

IV. PROPERTIES OF THE NEUROFUZZY CONTROLLER

The proposed neurofuzzy controller can be decomposed into
two parts: static nonlinear parts, which is a topology conserving
map, and an adaptive linear part, which is learned in the same
manner as neural networks. Much work has already been pub-
lished in the literature on the analysis of fuzzy controllers. In
this section, a brief description of the relationship between fuzzy
control and traditional control is presented.

Fuzzy controllers are developed initially as a two-dimen-
sional (2-D) controller with error (difference between the set
point and the output) and the change in error as the input. This
controller structure is devised from the way an experienced
operator controls the plant. His control strategy is formulated
as the following step-respond characteristic: “if the plant output
is far away and moving away from the set point, then increase
the control value to bring the output back to the set point”.

306 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 34, NO. 3, JUNE 2004

In general, a 2-D fuzzy controller with linear control rules is
equivalent to the sum of a global 2-D multilevel relay and a local
nonlinear PI controller [19]. Similarly, a three-dimensional fuzzy
controller with linear control rules is the sum of a global three-di-
mensional multilevel relay and a local nonlinear PID controller
[20]. A fuzzy controller with normally distribution membership
function is essentially equivalent to one with a linear and a non-
linear controller [21], where the nonlinear part is asymptotically
linear, if the number of fuzzy sets is large enough. As discussed
in previous sections, neurofuzzy controllers can be considered as
nonlinear self-tuning controllers. If the number of linear fuzzy
rules is sufficiently large, it can be shown that in the limit the de-
fuzzified output can be approximated by a linear function of the
controller input [22]. This result can also be extended to fuzzy
controllers with multi-input [23].

Due to the nonlinearity present both within the plant and the
neurofuzzy controller, global stability of the closed-loop system
is difficult to obtain. However, under certain conditions, the
local stability of the closed-loop system can be established. The
state-space (10) can be rewritten as

(20)

where the weights obtained in the previous updating steps are
denoted by the superscripts to its left. Let
the set point, , and be the equilibrium point of the
system. Now choose a Lyapunov function defined on
the compact set S as:

(21)

where .
Then

(22)

(23)

For small enough , i.e., , the change in
the Lyapunov function is given by

(24)

Fig. 7. Controlling steam pressure by fuel consumption and/or steam flow.

Substituting (16) and (17) into (24) gives

(25)

where is the Jacobian of
the nonlinear function in the nonlinear model (5), which is
assumed to exist. Consequently, the state converges to the equi-
librium point under neurofuzzy control law (15) if the learning
rate satisfies the condition to ensure to be small
enough, though the convergence may be slow, and hence the
local stability of the system around the equilibrium point is es-
tablished.

V. CASE STUDIES

Two examples are presented to illustrate the implementation
and the performance of the neurofuzzy network-based MRAC.
Comparison with linear MRAC is also made. In example 1,
the local linear model of the combustion process of a 300-MW
steam-boiler power-generation system under a changing load
condition is considered, and in example 2, a noisy nonlinear
system is used.

A. Example 1: Local Linear System of a Steam-Boiler
Power-Generation System

The fuel combustion system is an important part of a fossil
fuel power generation plant to produce high pressure steam that
drives the steam-turbine generator. The main objective of the
boiler control system is to maintain the outlet steam pressure at
a desired level under varying load conditions or subject to other
types of disturbances. The steam pressure is controlled by ad-
justing the amount of coal to be delivered to the furnace of the
boiler and load is controlled by adjusting the steam valve that
controls the steam flow going into the steam turbine, as shown
in Fig. 7. For an increase in the load, the control valve will be
opened immediately to increase the steam flow to the steam tur-
bine, and thus increases the output power of the steam turbine.
The steam pressure will be decreased. The transient process of
the steam pressure is shown in Fig. 8.

LIU et al.: MRAC BASED ON NEUROFUZZY NETWORKS 307

Fig. 8. Steam pressure for an increase in steam valve setting.

For a constant fuel consumption, the transfer function with
steam pressure as the output and the steam valve setting
as the control is a second-order linear representation [2]

(26)

Rewrite (26) as

(27)

where .
Note that and are a function of the operating point.
From the data shown in Fig. 8, which are obtained when the
system is operating at a load condition of 250 MW, the estimated
parameters of (26) are s s,
kg/s/%.

The conventional model reference adaptive controller is
chosen to be

(28)

From (27) and (28), the closed-loop output is given by

(29)

Let the reference model be chosen as

(30)

where and are the designed parameters. In this example,
these parameters are chosen to be . The
parameters of the controller (28) are updated by the following
equations:

(31)

where is the differential operator. The initial values of the
estimated parameters are chosen to be: ,
and . The closed-loop response of steam pressure is
shown by the dashed line in Fig. 9 for a square-wave change in
the set point. After a few cycles in the change of the set point,
the controller is trained, giving good closed-loop response with
a short setting time and small overshoots [see also the tracking

Fig. 9. Closed-loop output using linear MRAC and neurofuzzy network-based
MRAC.

Fig. 10. Tracking error of (a) linear MRAC (dashed line) and (b) neurofuzzy
network-based MRAC (dotted line).

error shown in Fig. 10(a)]. From the simulation result, the linear
MRAC is quite acceptable for controlling the steam pressure
under fixed working condition in practice.

The MRAC is then implemented using a neurofuzzy network,
as described in Section IV. Each of the input is fuzzified by two
triangular basis functions, representing the linguistic variables:
“small” and “large”. In this case, , and

308 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 34, NO. 3, JUNE 2004

. From (13), the number of weights of the
neurofuzzy network is: . The range of
and is chosen to be between and 3. The initial weight

is set to 0.1, same as that for the linear MRAC controller.
The closed-loop output using the MRAC based on the

neurofuzzy network is shown by the dotted line in Fig. 9, and
the tracking error is shown in Fig. 10(b). During the initial
learning period, the overshoot is large, but becomes smaller as
the training of the neurofyzzy network is progressed. Indeed,
as the training increases, the perfromance of the neurofuzzy
network-based MRAC is close to the linear one. The reason
for the neurofuzzy newtwork-based MRAC to take longer to
train is mainly due to the larger number of the parameters in
the proposed controller.

B. Example 2: Nonlinear Model

Consider the following nonlinear system [4]:

(32)

where is a normally distributed white noise with zero mean
and a variance of . The linear MRAC with the input

is applied first to control the
system. The reference input is again a square wave, and the
following equations are used to update the parameters of the
MRAC:

(33)

The initial values of these parameters are
, and . The closed-loop output is poor with

large overshoots and oscillations, as shown in Fig. 11.
The neurofuzzy network-based MRAC is implemented with

the same input as in the linear case. Again, two triangular basis
functions are used for each of the input, which represent the
linguistic variables “small” and “large”. In this case,

, and
. From (13), the number of weights of the

neurofuzzy network is . The range of
and is chosen to be between 0 and 12. The

initial weight is set to the same initial values as that for the
linear MRAC, and the update of the weights is given by

(34)

The closed-loop output using the neurofuzzy network-based
MRAC is shown in Fig. 12. In this case, the overshoots and the
oscillations are much smaller, yielding a much better perfor-
mance than the linear MRAC. The small oscillations that occur
at the steady-state level of the closed-loop output arises from
poor approximation of the nonlinearity in the system, as only
two basis functions are used for each of the input. To reduce
these oscillations, five triangular basis functions are used next,
which represent the linguistic variables “positive large”, “posi-
tive medium”, “zero”, “negative medium”, and “negative large”.

Fig. 11. Closed-loop output of nonlinear system with linear MRAC.

Fig. 12. Closed-loop output of nonlinear system with neurofuzzy
network-based MRAC.

Fig. 13. Neurofuzzy controller implemented by lower-dimension submodels.

Fig. 14. Closed-loop output using the approximated MRAC.

With a typical B-spline network, this would require
storage locations and each input would activate basis
functions. We make the controller additively decomposed. The
following approximation is used to implement the neurofuzzy
network-based MRAC:

(35)

The neurofuzzy network for implementing the controller (35)
is a linear combination of two 2-D subnetworks as shown in
Fig. 13. The advantage of this approximation is that the number
of weights is reduced drastically to 50 for each of the input.
With the increase in the resolution of the fuzzification of the
input, the steady-state oscillations are greatly reduced, as shown
in Fig. 14.

LIU et al.: MRAC BASED ON NEUROFUZZY NETWORKS 309

VI. CONCLUSION

A neurofuzzy network-based MRAC is derived in this paper.
Neurofuzzy networks are chosen here not only because of their
ability to approximate nonlinear functions with arbitrary accu-
racy, but also the weights of the network can be readily updated
online. The implementation of the neurofuzzy network-based
MRAC is presented, and the local stability derived. The im-
plementation and the performance of the proposed controller
are demonstrated by two examples. The first example involves
a local linear model of the steam pressure in the boiler of a
300-MW power-generation plant, whilst in the second, a non-
linear system. It is shown that on linear system, the perfor-
mance of the neurofuzzy network-based MRAC is comparable
to the linear MRAC, but longer learning time is required, as the
number of weights is larger. However, the performance of the
proposed controller is superior to the linear MRAC controller in
the case of the nonlinear system. It is also shown that increasing
the resolution of the fuzzification of the input can reduce oscil-
lations in the closed-loop output. The problem of “curse of di-
mensionality” can be reduced using lower dimension submodels
to implement the nonlinear controller.

REFERENCES

[1] P. A. Ioannou and J. Sun, Robust Adaptive Control. Englewood Cliffs,
NJ: Prentice-Hall, 1996.

[2] X.-J. Liu, Y.-M. Peng, and X. Zhou, “Identification of boiler models
and its fuzzy logic strategy,” in Proc. 14th IFAC World Congr., vol. O,
Beijing, China, July 1999, pp. 149–154.

[3] K. S. Narendra and K. Parthasarathy, “Identification and control of dy-
namical systems using neural networks,” IEEE Trans. Neural Networks,
vol. 1, pp. 4–27, Jan. 1990.

[4] S. Bittanti and L. Piroddi, “GMV technique for nonlinear control with
neural networks,” Proc. Inst. Elect. Eng.—Control Theory Applications,
vol. 141, no. 2, pp. 57–69, Mar. 1994.

[5] M. Yuan, A. N. Poo, and G. S. Hong, “Direct neural control system:
Nonlinear extension of adaptive control,” Proc. Inst. Elect. Eng.—Con-
trol Theory Applications, vol. 142, no. 6, pp. 661–667, Nov. 1995.

[6] G. Lightbody and G. W. Irwin, “Direct neural model reference adaptive
control,” Proc. Inst. Elect. Eng.—Control Theory Applications, vol. 142,
no. 1, pp. 31–43, Jan. 1995.

[7] T. K. Yin and C. S. G. Lee, “Fuzzy model-reference-adaptive-control,”
IEEE Trans. Syst., Man, Cybern., vol. 25, pp. 1606–1615, Dec. 1995.

[8] C. S. Chen and W. L. Chen, “Robust model-reference-adaptive-control
of nonlinear systems using fuzzy systems,” Int. J. Syst. Sci., vol. 27, no.
12, pp. 1435–1442, 1996.

[9] B. Kosko, Neural Networks and Fuzzy Systems. Englewood Cliffs, NJ:
Pretice-Hall, 1992.

[10] M. Brown and C. J. Harris, Neurofuzzy Adaptive Modeling and Con-
trol. Englewood Cliffs, NJ: Prentice-Hall, 1994.

[11] J. Zhang and A. J. Morris, “Fuzzy neural networks for nonlinear systems
modeling,” Proc. Inst. Elect. Eng.—Control Theory Applications, vol.
142, no. 6, pp. 551–561, Nov. 1995.

[12] C. W. Chan, X.-J. Liu, and W. K. Yeung, “Neurofuzzy network based
self-tuning control with offset elimination,” Int. J. Syst. Sci., vol. 34, no.
2, pp. 111–122, 2003.

[13] C. W. Chan, K. C. Cheung, and W. K. Yeung, “A computation-efficient
on-line training algorithm for neurofuzzy networks,” Int. J. Sys. Sci., vol.
31, no. 3, pp. 297–306, 2000.

[14] S. G. Kong and B. Kosko, “Adaptive fuzzy systems for backing up a
truck-and-trailer,” IEEE Trans. Neural Networks, vol. 3, pp. 211–223,
Mar. 1992.

[15] W. Pedrycz, “Processing in relational structures: Fuzzy relational equa-
tions,” Fuzzy Sets Syst., vol. 40, no. 1, pp. 77–106, 1991.

[16] D. E. Serborg, T. F. Edgar, and D. A. Mellichamp, Process Dynamics
and Control. New York, NY: Wiley, 1989.

[17] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its ap-
plications to modeling and control,” IEEE Trans. Syst., Man, Cybern.,
vol. SMC-15, pp. 116–132, Feb. 1985.

[18] S. Chen and S. A. Billings, “Representations of nonlinear systems: The
NARMAX model,” Int. J. Control, vol. 49, no. 3, pp. 1013–1032, 1989.

[19] H. Ying, “A nonlinear fuzzy controller with linear control rules is
the sum of a global two-dimensional multilevel relay and a local
nonlinear proportional-integral controller,” Automatica, vol. 29, no. 2,
pp. 499–505, 1993.

[20] X.-J. Liu, H.-S. Zhang, and T.-Y. Chai, “Structure analysis of three-di-
mensional fuzzy controller and its relationship to PID controller,” Proc.
36th IEEE Conf. Decision and Control, pp. 3350–3351, Dec. 10–12,
1997.

[21] X.-J. Liu and X. Zhou, “Structure analysis of fuzzy controller with
gaussian membership function,” in Proc. 14th IFAC World Congr., vol.
K, Beijing, China, July 5–9, 1999, pp. 201–206.

[22] H. Ying, “General analytical structure of typical fuzzy controller and
their limiting structure theorems,” Automatica, vol. 29, no. 4, pp.
1139–1143, 1993.

[23] C.-C. Wong, C.-H. Chou, and D.-L. Mon, “Studies on the output of
fuzzy controller with multiple inputs,” Fuzzy Sets Syst., vol. 57, no. 2,
pp. 149–158, 1993.

Xiang-Jie Liu received the Ph.D. degree in electrical
and electronic engineering from the Research Center
of Automation, Northeastern University, Shenyang,
China, in 1997. He was then in the postdoctor pro-
gram in the Electric Power Research Institute (EPRI),
Beijing, China, until 1999.

He was an Associate Professor at EPRI and a Re-
search Associate with the University of Hong Kong.
He joined the National University of Mexico, Mexico
City, in 2001, where he is now a Professor with the
Research Center of Instrumentation. His current re-

search areas include fuzzy control, neural network, filtering, intelligent control
theory and its application in the industrial process, and the development and ap-
plication of DCS.

Felipe Lara-Rosano received the M.S. and Ph.D.
degrees in mechanical and electrical engineering
from the National University of Mexico, Mexico
City, in 1970 and 1973, respectively. He received an
honorary doctorate from the International Institute
for Advanced Systems Research and Cybernetics,
Windsor, ON, Canada.

He has been Director of the Center for Applied
Science and Technological Development, University
of Mexico, since 1997. His current research interests
include artificial intelligence, expert systems, fuzzy

logic, and neural networks.
Dr. Lara-Rosano is a member of the New York Academy of Sciences, the

Mexican Academy of Sciences, the Mexican Academy of Engineering, and the
Mexican Academy of Technology. He is a Fellow and Board Member of the
International Institute for Advance Systems Research and Cybernetics.

C. W. Chan received the M.Sc. and Ph.D. degrees in
control from the Institute of Science and Technology,
University of Manchester, Manchester, U.K.

He has previously been with Weir Pumps Ltd., the
National Engineering Laboratory, and Unilever Re-
search Port Sunlight Laboratory. He is currently with
the Department of Mechanical Engineering, Univer-
sity of Hong Kong. His research interests include de-
sign and analysis of compensation for actuator sat-
uration, fuzzy logic, neural networks, adaptive neu-
rofuzzy controllers, and fault detection and isolation.

He is Regional Editor (Asia Pacific) of the International Journal of Systems Sci-
ence.

