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Abstract 
A self-tuning neurofuzzy controller with an ability to 
remove offsets is derived in this paper based on the 
self-tuning integrating controller derived for the local 
linear model. The training target for the proposed 
controllers is derived, and they can be trained by the 
simplified recursive least squares ( I U S )  methold with 
a computing time that is linear instead of geometric in 
the number of weights in the network. Further, the 
simplified RLS method not only has the same 
convergence property as the RLS method, it also has a 
better ability in tracking varying parameters. The 
performance of the self-tuning neurofuzzy controller 
is illustrated by examples involving both linear and 
nonlinear systems. 

Keywords: Self-tuning controllers, integrating 
controllers, nonlinear controllers, neurofuzzy 
networks. 

1. Introduction 
The development of nonlinear controllers based on 
neural networks has attracted considerable interest 
recently. The main motivation to use neural networks 
for the implementation of nonlinear controllers is their 
ability to approximate both linear and nonlinear 
systems with arbitrary accuracy, and to be trained 
from experimental data [l, 21. In general, neural 
network based controllers are implemented using one 
or two networks. In the indirect method, two neural 
networks are usually used, one trained offline to 
model the system or the inverse of the system, and the 
other trained offline or online to implememt the 
controller [3]. In [4], neural network based controllers 
involving a conventional feedback controller is 
proposed. The neural networks are trained by the 
feedback-error-learning method either to mirnic the 
inverse of the system, or a nonlinear regulatm. An 
adaptive model reference control scheme based on 
neural networks is presented in [5].  The neural 
network controller is trained such that the output of 
the system follows the output of a given reference 
model. Single layer neural networks are used in these 
schemes, and are trained by the slow gradient method. 

NeurofUzzy networks have a number of attractive 
properties to be used in implementing nonlinear 

controllers. Similar to other neural networks, they can 
approximate nonlinear functions with arbitrary 
accuracy [12]. They have compact supports, and are 
linear-in-weights networks. The latter property 
enables the weights of neurofuzzy networks to be 
estimated using welldeveloped linear parameter 
estimation methods. To estimate these weights on- 
line, recursive least squares (RLS) method can be 
used. However, updating these weights on-line can be 
time consuming, as the number of weights increases 
geometrically as the complexity of the network 
increases. To reduce the computing time, a simplified 
RLS method is proposed in [6]. From the compact 
property of neurofiuzy networks, it is shown that 
there are a large number of zeros in the transformed 
input of the network. Consequently, it is proposed in 
[6] to simplify the U S  method with only elements of 
the covariance matrix associated with non-zero 
elements of the transformed input are updated, 
yielding a computing time linear instead of geometric 
in the number of weights. It is further shown that the 
convergence of the simplified IUS method is the 
same as the RLS method. 

Since neurofuzzy networks can be interpreted as a 
network that consists of local models with a smooth 
transition between them [8], neurofuzzy controllers 
can be designed by adopting the same design for local 
linear controllers. As self-tuning controllers are simple 
to implement and can be trained on-line [9], they are 
chosen in [7] to be the local linear controllers to 
develop the self-tuning neurofuzzy controllers. The 
self-tuning neurofUzzy controllers derived in [9] are 
based on the generalized minimum variance control 
law. In this paper, self-tuning integrating controllers 
that have the ability to remove offset in the nonlinear 
system [ 101 are considered. 

The structure of this paper is as follows. In Section 2, 
a brief description of the integrating controllers is 
presented, followed by the derivation of the 
neurofuzzy controllers and its training target in 
Section 3. In Section 4, the on-line training of the 
controllers is presented. The implementation and the 
performance of the self-tuning controllers are 
illustrated by two simulation examples, one involving 
a linear system, and the other, a nonlinear system, as 
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presented in Section 5 .  

2. Integrating Controllers for Local Linear Models 
A nonlinear system with fmite dimension can be 
described by [ 111, 
Y O )  = f!N - 11, y( t  - 2),- ,y(t  - n), 

(1) u(t - k), u(r - k - l),- --, u(t - k - m)] 
where { # ( I ) ) ,  Nt)) are the input and output 
respectively; A.) is an unknown smooth nonlinear 
function; n, m, and k are respectively the orders, and 
the time delay of the system, which are assumed 
known. As A.) is a smooth fhction, a local linear 
model can be obtained ftom the linear term of the 
Taylor series expansion off(.). A simple, yet effective 
approach to control nonlinear systems is to switch 
between local linear controllers designed at specified 
operating points. The main advantage of this approach 
is that only linear controller design techniques are 
involved. However, the drawback is that the control 
during the transition from one local model to another 
may not always be smooth. In contrast, much 
smoother transition can be obtained from neurofuzzy 
networks, as they are able to approximate smooth 
nonlinear fhctions with arbitrary accuracy [12]. For 
this reason, neurofuzzy networks are chosen here to 
implement the nonlinear controllers, which is 
discussed in details in the following section. A brief 
description of the integrating controller is presented in 
this section, and the reader is referred to [IO] for 
further details. 

Let the im local linear models be given by 
(2) 

where e(r) is a white noise with zero mean and a 
variance of d; i ' ,  the backward-shift operator; k, the 
delay; A = 1 - if, the differencing operator, and 

A'(z-')y(t)  = ~ - ~ B ' ( z - ' ) u ( t )  + C'(z-')e(t)/A 

A'(z-1) = 1+ a;.-' +e.. + Qz-", 

B ' ( z - ' ) = ~ + q r z - ' + - - . + b ~ z - "  ; b; # O  
Rearranging (2) gives, 

x ( z - ' ) y ( t )  = z-kB'(z-l)Au(t) +C'(z-')e(r) ( 3 )  

where Z(Z- ' )  = A'(z-')A and 
Au(t)=u(I)-u(t-1).  As the control in (3) is in 
incremental form, an integrator is being introduced 
into the system for removing offsets. The integrating 
controller is obtained by minimizing the following 
cost function. 

J = ( I  + k)] (4) 

('( t  + k) = P'y(r + k) + Q'u(f) - R'r(t) ( 5 )  
where &t) is the auxiliary output given by 

P', Q' and R' are polynomials in i' and r(t) is the set 

point. The integrating controller is derived by 
splitting B(t+k) into two terms, one of which is set 
to zero by the integral control A@, whilst the 
other contains the white noise (e(t+l), . . ., e(t+k)). 
This is achieved by using the Diophantine equation, 

(6) 
where E and Gi are polynomials in z-' with orders k-1 
and ny respectively, 

P'C' = E'&' + z-kG' 

E'(z-')=l+e;z-'  + . . . + , i  k-1 Z-(t-') 

G'(z-')  = g: + g:,z-' + --. + g:,z-"y 

nu = max(n, np + n, - k )  
From (2) and (6), /(t) can be rewritten as, 

1 
@'(I + k) = --[G'y(r) + c'Qiu(r) - CiRir(t) 

C' (7) 
+ B'E'Au(t)] + E'e(t + k) 

As the fmt term on the right hand side of (7) is 
uncorrelated with the term containing e(f+k), &t) is 
minimized by setting this term to zero, giving 

(8) 
Let Q' = e' A, (8) can be rewritten as 

(9) 

C'Q'u(t) + B'E'Au(r) + G'y(i) - CiRir(t) = 0 

(C'Q''+B'E')Au(r) + G'y(t) - CiRir(z) = 0 

or F'Au(2) + G'y(r) + H'r(t) = 0 (1 0) 
where F' = C'Q''+B'E' , and H i  = -C'R' . From 
(1 O), the integrating controller is 

~ u ( t )  = -F(z-')&(t) - $(z- ' )y ( t )  - P'(z- l )r( t )  
(11) 

where 

F ' ( Z - l ) = p ( z - l ) , f o '  -l=%$z-l 
j-1 

"Y 

j = O  
e ( z - ' ) = G ' ( ~ - ' ) / f o '  = c&-' 

n, - 
j = O  

B'(f-1) = fp(z-')/&j = Chi'z-1 

fo' is the leading constant of Fi(z-')  and n,,,n& are 
the orders of the system. 

3. Neurofuzzy Controllers Based on Local 

A nonlinear controller based on the linear integrating 
controller (1 1) can be expressed as follows, 

Au& 1),-- A&- nd,)] 

Integrating Controllers 

(12) 

where the notations are defined previously. The 
nonlinear controller (12) is to be implemented by a 
neurofuzzy network, and under certain conditions, it is 

Au(t). ffy(0,  a-., y(t - n,), r(r);.-, r(t - n,), 
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a linear-in-weights network [SI, as given below. 

where B = [ 4, 4, . . ., BPIT is the weight vector, x(t) 
= Wt), ..., y(: - ny), r(t), ..., r(t - nJ, Au(t - l), ..., 
Au(t - n h ) ]  , the input vector and u(x(i)), the 
transformed input vector. The dimension of .n(t), n, 
is given by 

and the number of weights, p .  in the network is 

Au(t) = aT(x(t))e (13) 

n = ny +n, +n,, +2 ’ (14) 

p=(Ry+pY)“’+‘(R,  +p,)flr’+l(Rh +ph)”, (15) 
where p,, p,, pau are the respective order of the basis 
functions for fit),  r(t) and Au(t), and R,, R, and R&, 
the respective number of inner knots. The transformed 
input, a,(x(t)), is the tensor products of the unjivariate 
B-spline basis functions pAi ( x k ( t ) ) ,  

From (1 3), the auxiliary output q5 (r+k) becomes 
+ ( t + k ) = [ A u ( t ) - ~ ~ ( ~ ( t ) ) f ? ] + E e ( t + k )  (17) 

Rearranging (1 7) yields, 
(18) 

As the mean of e(t) is zero, and likewise, the mean of 
Ee(t+k) is also zero. As e(?) is assumed to be a white 
noise, Ee(t+k) is uncorrelated with the other tems on 
the right-hand side of (18). The training target of the 
neurofuzzy controller, denoted by dt), can be derived 
fiom (18) as 

(19) 
where q5 (t+k) is computed by ( 5 )  for a given P(z?), 
Mi’), and R(z-’). 

J ( ~ ( t ) ) 6  = Au(t) - 4(t + k )  + Ee(t + k) 

I&) = du(t - k) - b(t) 

4. On-line Training of the Neurofuzzy Cootirollers 
On-line training of the neurohzzy controller (13) 
involves updating 0 recursively at each srunpling 
interval. The RLS estimate of O(t) is given by I:lO], 
s(t) = e(t - 1) + 

P(t - l)a(x(t - k))[v(t) - aT(x(t - k))6’(t - - l)] 
1 + UT (n(r - R))P(t - l)a(x(t - R ) )  

P(t)  = P(t - 1)- 

P(t - l)a(x(t - k))ar(x(t - k))P(t - 1) 
1 + uT (x(t - k))P(t  - 1)a(x(t - k)) 

(20) 
where P(t) is the covariance matrix at t. From the 
compact support property of neurofUzzy networks [SI, 
the number of nonzero elements in u(x(t)) is 

(21) n,+l “ ,+I  nbr 
P’=Py Pr PAU 

As an example, the neurohzzy network shown in Fig. 
2 consists of two inputs h i f i e d  by second order 
basis functions, i.e., ny = n, = n b  = 0, and pu = p, = 2. 
Let the number of inner knots for y be chosen to be 5, 
and that for w be chosen to be 4. From (15) and (2 l), p 
and p’ are 42 and 4 respectively. From Fig. 2, only the 
basis functions associated with the four squares 
surrounding “1” are non-zero, when the knots y2 and 
w2 are activated. Similar results are obtained for knots 
b2, w3}, b3, w2}, and b3, w3},  showing that, in this 
example, two inner knots of each variable are 
activated each time. For the “x” shown in Fig. 2, the 
knots Cy2, y3}  in y and {w2, w3} in w are activated. As 
the activated regions overlap each other, only nine 
squares are activated, as shown in Fig. 2. For 
convenience, let the non-zero elements, denoted by 
al(x(t)), be arranged at the top of u(x(t)), 

(22) 
where 0 is a column zero vector of dimension (p - p’). 
Let &t) and P(t) be similarly rearranged, 

a(x(t)) = [UT (x ( t ) )  oT I T  

From (22) and (23), (20) can be rewritten as, 
e, (ti - e, (t - I)  = 
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activated, and the choice of the initial choice of the 
covariance matrix, P(O), be a diagonal matrix. Then 
P,2(0) = P2/(0) = 0, and P22(0) = W, where A is a 
constant, and I, a unit matrix. From (25), PI2(t), Pz,(t), 
and P&), and hence &(t) remain unchanged fiom 
their initial values. Further, they do not affect the 
estimate of the weights associated with basis functions 
that have been activated. It implies that the input 
domain, or the number of inner knots, of the input 
variables can be expanded at any time without re- 
computing both P(r) and qt). In other words, the 
structure of the neurofuzzy controllers can be 
expanded without re-training if the lUS method is 
used with P(0) set to a diagonal matrix. "hiis unique 
property of neurofuzzy networks does not generally 
apply to other neural networks. 

4.1 Simplified Recursive Least Squares Method 
As the number of weights p given by ( 1 5 )  can be quite 
large, updating B on-line may be quite time 
consuming. To reduce computing time, the IUS 
method can be simplified using the local change 
property of neurofUzzy networks discussed earlier. 
Instead of updating the whole P(t), only PI&), P12(t) 
and P21(t) are updated, as indicated by the shaded 
areas in Fig. 3. In this case, only p'(p@'-1)/2) 
elements of P(t) are computed instead of p(pcl)/2 
elements in the RLS method, and the computing time 
is now linear in the number of weights. The saving in 
computing time is significant, especially if p is much 
larger thanp'. Rearranging (25b) gives, 

P22 0)  - P22(t - 1) 
=- p2] (t - l)q (x(r - k))ar (x( t  - k))q2(r  - 1) (26) 

1 + a:(x(t - k ) ) ~ ,  I (t  - ~ ) a ~  (x(t - k)) 
From (26), the update of PZ2(t) involves subtracting a 
positive definite matrix &om PE(t-l). Consequently, if 
P&) is not updated, it is equivalent to adding a 
positive definite matrix to it. As the right hand side of 
(26) approaches zero as time tends to infinity [6], 
adding a positive definite sub-matrix to P(t) at each 
sampling interval is effectively adding a positive 
definite matrix to P(t) over the whole training period. 
Since it is well known that adding a positive definite 
matrix to P(t) does not alter the convergence of the 
RLS estimate [ 121, the simplified IUS method has the 
same convergence property as the RLS method. A 
further advantage of adding a positive definite matrix 
to the covariance matrix is that its ability to track 
varying parameters is enhanced [7]. 

4.2 On-line training procedure 
The on-line training of the self-tuning neurofUzzy 
controllers can be summarized below. 

( 1 )  Select (i) the number of input variables, i.e., n and 
m, the delay k in eqn. 1, (ii) the order of the basis 
functions, the range and the number of inner 
knots for each input variable, (iii) P(z"), Q(z-') 
and R(z-') in the generalized system output given 
by (5). 

(2) Initialize RO), say to 0.1, and P(O), say to 1001. 
(3) Measure the output of the system f i t ) ,  and update 

qf) by (24), and P(t) by (25a). 
(4) Compute the control u(t) by ( 1  3). 
(5) Repeat steps (3) and (4). 

5. Simulation Examples 
Two examples, one involving a linear system, and the 
other, a nonlinear system are presented. As expected, 
the performance of the self-tuning neurofuzzy 
controller is similar to the self-tuning controller in the 
linear case, but is superior to the self-tuning controller 
in the nonlinear case. 

Example 1 Linear system 
Consider the following linear system, 

~ ( t )  = 1 Sy(t - 1 )  - 0.7y(t - 2 )  + ~ ( t  - 1 )  
(27) 

where e(t) is a normally distributed noise with zero 
mean and a standard deviation of 1. Let P= 1, R=l and 
Q=O, then &) becomes 

P(Q = Y ( 0  -4 - 1 )  (28) 
Assuming (27) is known, the integrating controller 
obtained from (1 1) is, 

(29) 

As the parameters in system (27) are assumed to be 
unknown, the controller parameters in (29) are 
estimated recursively on-line by the IUS method 
given by (20) with RO) = 0.1, and P(0) = 1001. The 
set point fir) is a triangular wave given by 

02rem(t I1 00) if 0 S rem(t f 100) < 50 
10-0.2rem(t/lOO) if 50 I rem(t/lOO) < 100 

(30) 

r( t )  = 

The system output using the integrating controller is 
shown in Fig. 4. The self-tuning neurofuzzy controller 
(1 3) is implemented with x(t) given by 

As (27) is linear, two triangular basis functions are 
selected for each input, giving p,, = p, = p. = 2, and Ry 
= R, = R,,,, = 0. From (1 9, the number of weights of 
the neurofuzzy network, p, is 32. The range ofy(r) and 
r(t) is chosen to be between -5 and 10, whilst that for 
Au(?) is between -5 and 5. The initial weights q0) are 
set to 0.1, and the initial covariance matrix, P(O), to 
1001. The system output for the neurofiuzy controller 

+ 0.5u(t - 2) + e( t ) /A 

du(t) = -[2.5y(t) - 2.2y(t - 1) + 0.7y(t - 2) + 
O.Sdu(r - 1) - r ( f ) ]  

{ 

x(t) = [y(t),y(t -1),~(~-2),r(t) ,Au(~-l)l  (31) 
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is shown in Fig. 5 .  From the accumulated cost 
functions shown in Fig. 6,  the performance of the self- 
tuning integrating controller and the self-tuning 
neurofUzzy controller are similar. 

Example 2 Nonlinear System 
Consider the following nonlinear model, 

y( t )  = 0.3y(t - 1) + 0.6y(t - 2)  +[u(t - 1)]“3 + ,e(t)/d 

where e(t) is zero mean with a variance of 1 .  Again, 
the generalized output Kr) is 

The set point is the square wave given by 

The integrating control law is 

(32) 

O ( 0  = r ( t )  - r(t - 1)  (33) 

r(t)=7.5+2.5sign(cos(2nt/lOO)) (34) 

jbAu(t) - &y(t) - &y(t - 1) - &y(t - 2)  -r( t )  = 0 
(35) 

Using the same initial values as in Example 1 ,  the 
output using the self-tuning integrating controller is 
shown in Fig. 7. Large oscillations after step changes 
are observed. 

The simulation is repeated using the n e w o w  
controller (13)  implemented with x(t) given by 

The training target of the neurofuzzy controller is 

Triangular basis functions is used for each input, 
giving py = pr = 2, and Ry = R, = 1. The range of y( t )  
and r(t) are selected to be between 3 and 12!. The 
number of weights of the neurofuzzy network: is 81. 
The output using the self-tuning neurofuzzy controller 
is shown in Fig. 8, and is less oscillatory, and much 
better than that using the self-tuning inteigrating 
controller. 

m = [y(t),y(t - 1),y(t - 2 ) , W l  

y(r) = du(t - 1 )  - &t) 

(36) 

(37) 

6. Conclusion 
A self-tuning neurofuzzy controller with the ability to 
eliminate offsets is derived based on self-tuning 
integrating controllers for the local linear model. It is 
shown that the proposed controllers can be traixled on- 
line using the simplified RLS method. Not olnly the 
computing time can be significantly reducied, the 
simplified RLS method also has a better parameter 
tracking ability. This is because updating the 
covariance matrix in the RLS method partially has the 
effect of adding a positive defmite matrix to the 
covariance matrix. The implementation and the 
performance of the self-tuning neurofuzzy controllers 
are illustrated by simulation examples involving both 
a linear and a nonlinear system. As expected, the 
performance of the self-tuning n e u r o w  controller 
for the linear system is similar to that of the self- 

tuning controller, but is superior to the self-tuing 
controller for the nonlinear system. 
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