28,805 research outputs found
SECaps: A Sequence Enhanced Capsule Model for Charge Prediction
Automatic charge prediction aims to predict appropriate final charges
according to the fact descriptions for a given criminal case. Automatic charge
prediction plays a critical role in assisting judges and lawyers to improve the
efficiency of legal decisions, and thus has received much attention.
Nevertheless, most existing works on automatic charge prediction perform
adequately on high-frequency charges but are not yet capable of predicting
few-shot charges with limited cases. In this paper, we propose a Sequence
Enhanced Capsule model, dubbed as SECaps model, to relieve this problem.
Specifically, following the work of capsule networks, we propose the seq-caps
layer, which considers sequence information and spatial information of legal
texts simultaneously. Then we design a attention residual unit, which provides
auxiliary information for charge prediction. In addition, our SECaps model
introduces focal loss, which relieves the problem of imbalanced charges.
Comparing the state-of-the-art methods, our SECaps model obtains 4.5% and 6.4%
absolutely considerable improvements under Macro F1 in Criminal-S and
Criminal-L respectively. The experimental results consistently demonstrate the
superiorities and competitiveness of our proposed model.Comment: 13 pages, 3figures, 5 table
Holographic Superconductors
A holographic model of superconductors based on the action proposed by
Benini, Herzog, and Yarom [arXiv:1006.0731] is studied. This model has a
charged spin two field in an AdS black hole spacetime. Working in the probe
limit, the normalizable solution of the spin two field in the bulk gives rise
to a superconducting order parameter at the boundary of the AdS. We
calculate the fermion spectral function in this\ superconducting background and
confirm the existence of fermi arcs for non-vanishing Majorana couplings. By
changing the relative strength of the and condensations, the
position and the size of the fermi arcs are changed. When , the
spectrum becomes isotropic and the spectral function is s-wave like. By
changing the fermion mass, the fermi momentum is changed. We also calculate the
conductivity for these holographic superconductors where time reversal
symmetry has been broken spontaneously. A non-vanishing Hall conductivity is
obtained even without an external magnetic field.Comment: 24 pages,17 figures, Add more discussions on hall conductivity, two
new figures, Matched with published versio
Differential Subordinations Involving Generalized Bessel Functions
In this paper our aim is to present some subordination and superordination
results, by using an operator, which involves the normalized form of the
generalized Bessel functions of first kind. These results are obtained by
investigating some appropriate classes of admissible functions. We obtain also
some sandwich-type results and we point out various known or new special cases
of our main results.Comment: 15 pages, accepted in Bulletin of the Malaysian Mathematical Sciences
Societ
On the Beaming of Gluonic Fields at Strong Coupling
We examine the conditions for beaming of the gluonic field sourced by a heavy
quark in strongly-coupled conformal field theories, using the AdS/CFT
correspondence. Previous works have found that, contrary to naive expectations,
it is possible to set up collimated beams of gluonic radiation despite the
strong coupling. We show that, on the gravity side of the correspondence, this
follows directly (for arbitrary quark motion, and independently of any
approximations) from the fact that the string dual to the quark remains
unexpectedly close to the AdS boundary whenever the quark moves
ultra-relativistically. We also work out the validity conditions for a related
approximation scheme that proposed to explain the beaming effect though the
formation of shock waves in the bulk fields emitted by the string. We find that
these conditions are fulfilled in the case of ultra-relativistic uniform
circular motion that motivated the proposal, but unfortunately do not hold for
much more general quark trajectories.Comment: 1+33 pages, 2 figure
Refractive index in holographic superconductors
With the probe limit, we investigate the behavior of the electric
permittivity and effective magnetic permeability and related optical properties
in the s-wave holographic superconductors. In particular, our result shows that
unlike the strong coupled systems which admit a gravity dual of charged black
holes in the bulk, the electric permittivity and effective magnetic
permeability are unable to conspire to bring about the negative
Depine-Lakhtakia index at low frequencies, which implies that the negative
phase velocity does not appear in the holographic superconductors under such a
situation.Comment: JHEP style, 1+15 pages, 11 figures, version to appear in JHE
Recent development of mechanisms and control strategies for robot-assisted lower limb rehabilitation
Robot-assisted rehabilitation and therapy has become more and more frequently used to help the elderly, disabled patients or movement disorders to perform exercise and training. The field of robot-assisted lower limb rehabilitation has rapidly evolved in the last decade. This article presents a review on the most recent progress (from year 2001 to 2014) of mechanisms, training modes and control strategies for lower limb rehabilitation robots. Special attention is paid to the adaptive robot control methods considering hybrid data fusion and patient evaluation in robot-assisted passive and active lower limb rehabilitation. The characteristics and clinical outcomes of different training modes and control algorithms in recent studies are analysed and summarized. Research gaps and future directions are also highlighted in this paper to improve the outcome of robot-assisted rehabilitation
Recommended from our members
TGFβ1 single-nucleotide polymorphism C-509T alters mucosal cell function in pediatric eosinophilic esophagitis.
Eosinophilic esophagitis (EoE) is a chronic Th2 antigen-driven disorder associated with tissue remodeling. Inflammation and remodeling lead to esophageal rigidity, strictures, and dysphagia. TGFβ1 drives esophageal remodeling including epithelial barrier dysfunction and subepithelial fibrosis. A functional SNP in the TGFβ1 gene that increases its transcription (C-509T) is associated with elevated numbers of esophageal TGFβ1-expressing cells. We utilized esophageal biopsies and fibroblasts from TT-genotype EoE children to understand if TGFβ1 influenced fibroblast and epithelial cell function in vivo. Genotype TT EoE esophageal fibroblasts had higher baseline TGFβ1, collagen1α1, periostin, and MMP2 (p < 0.05) gene expression and distinct contractile properties compared with CC genotype (n = 6 subjects per genotype). In vitro TGFβ1 exposure caused greater induction of target gene expression in genotype CC fibroblasts (p < 0.05). Esophageal biopsies from TT-genotype subjects had significantly less epithelial membrane-bound E-cadherin (p < 0.01) and wider cluster distribution at nanometer resolution. TGFβ1 treatment of stratified primary human esophageal epithelial cells and spheroids disrupted transepithelial resistance (p < 0.001) and E-cadherin localization (p < 0.0001). A TGFβ1-receptor-I inhibitor improved TGFβ1-mediated E-cadherin mislocalization. These data suggest that EoE severity can depend on genotypic differences that increase in vivo exposure to TGFβ1. TGFβ1 inhibition may be a useful therapy in subsets of EoE patients
Holographic Superconductors from Einstein-Maxwell-Dilaton Gravity
We construct holographic superconductors from Einstein-Maxwell-dilaton
gravity in 3+1 dimensions with two adjustable couplings and the charge
carried by the scalar field. For the values of and we
consider, there is always a critical temperature at which a second order phase
transition occurs between a hairy black hole and the AdS RN black hole in the
canonical ensemble, which can be identified with the superconducting phase
transition of the dual field theory. We calculate the electric conductivity of
the dual superconductor and find that for the values of and where
is small the dual superconductor has similar properties to the
minimal model, while for the values of and where is
large enough, the electric conductivity of the dual superconductor exhibits
novel properties at low frequencies where it shows a "Drude Peak" in the real
part of the conductivity.Comment: 25 pages, 13 figures; v2, typos corrected; v3, refs added, to appear
in JHE
Moving Defects in AdS/CFT
We study defects of various dimensions moving through Anti-de Sitter space.
Using the AdS/CFT correspondence this allows us to probe aspects of the dual
quantum field theory. We focus on the energy loss experienced by these defects
as they move through the CFT plasma. We find that the behavior of these
physical quantities is governed by induced world-volume horizons. We identify
world-volume analogs for several gravitational phenomena including black holes,
the Hawking-Page phase transition and expanding cosmological horizons.Comment: 24 pages, 7 figures. Version 2 contains two added reference
- …
