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Abstract

Robot-assisted rehabilitation and therapy has become more and more frequently used to help the
elderly, disabled patients or movement disorders to perform exercise and training. The field of
robot-assisted lower limb rehabilitation has rapidly evolved in the last decade. This article presents a
review on the most recent progress (from year 2001 to 2014) of mechanisms, training modes and
control strategies for lower limb rehabilitation robots. Special attention is paid to the adaptive robot
control methods considering hybrid data fusion and patient evaluation in robot-assisted passive and
active lower limb rehabilitation. The characteristics and clinical outcomes of different training modes
and control algorithms in recent studies are analysed and summarized. Research gaps and future
directions are also highlighted in this paper to improve the outcome of robot-assisted rehabilitation.
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1 Introduction

According to the data from World Health Organization (WHO), the proportion of world’s people over
60 years will be doubled from 11% to 22% between 2000 and 2050. During the same period, the
number of elderly people aged over 60 years will increase from 605 million to 2 billion. More than
half of the worldwide elderly people live in Asia (54%), followed by Europe (22%) [1]. Many countries
have gradually entered the aged society. Meanwhile, there are about 650 million people with
disabilities worldwide, accounting for about 10% of the world's total population, where 80% of
disabled people live in developing countries [2]. The report “2013 China Statistical Yearbook of
Disabled People” shows that the total number of people with disabilities in China is approximately
37.95 million [3], in which the physically limbs disabled is 15.64 million, occupying 59% of the total
disabilities. Among the aged society and increasing disabled population, there will be obvious
recession in these people’s physiological functions, severely affecting their daily lives.

The rehabilitation and training of elderly, disabled and other movement disorders has become a
major social problem to be resolved, however, the conventional manual therapy mainly relies on the
therapist’s experience, making it difficult to meet the requirements of high-intensity and repetitive
training [4]. The number of physiotherapists is severely lacking, and the evaluation methods are
mostly subjective, so the treatment effects cannot be guaranteed [5]. In this situation, there is a
considerable increase in the needs of advanced rehabilitation devices, which are expected to assist
patients to perform training exercise precisely, quantitatively and scientifically [6]. Rehabilitation
robotics has become a research field that attracts more and more attentions in the last decade.
Applying robots to rehabilitation can not only release physicians from the heavy burden of training
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missions, but also evaluate patients’ recovery status by analysing the data recorded in robotic
training process. Due to its advantages in terms of accuracy and reliability, rehabilitation robotics is
able to provide an efficient approach to improve the recovery outcomes after stroke or surgery.

Nowadays, there have been several published review papers on control strategies of robotic
rehabilitation and training. For example, a review on categories of control strategies of all kinds of
rehabilitation robots was conducted in [7], however, very few details of mechanisms and control
algorithms were given to the lower limb rehabilitation robots. Diaz et al. conducted a comprehensive
survey of existing robotic systems for lower limb rehabilitation [8]. This review is quite informative. It
covered most current lower limb robots, however, the robotic training modes and control strategies
were not emphasized somehow. Kwakkel et al. presented a systematic review on the effects of
robot-assisted therapy and mainly focused on the clinical outcomes of different robots [9], in which
the detailed discussion of robot control strategies was also included. On the other hand, Hussain et
al. provided a review of the treadmill based robotic gait training devices but specifically focused on
the control strategies related to treadmill robots [10]. Mohammed et al. reviewed the state of the
art of the lower limb wearable robots [11, 12], which mainly focused on actuated exoskeletons and
the control strategies in them. Another review concentrating on lower limb exoskeletons and active
orthoses was done by Dollar and Herr [13], but it only covered devices that operate in parallel with
human legs. In recent years, novel control strategies (such as adaptive control and assist-as-needed
control) have been widely used in lower limb rehabilitation robots, but they are not specifically
discussed in previous papers. With the emerging human-robot interaction techniques, biofeedback
and hybrid control have also become more and more popular in newly developed rehabilitation
robots. Although many review papers mentioned that bio-signals based control strategies have been
regarded as effective strategies and become a popular research area, however, none of them have
investigated or summarized the recent studies on this kind of strategies [14].

This paper gives a review and analysis of mechanisms, training modes and control strategies of
lower limb rehabilitation robots, especially the control methods considering hybrid data fusion and
adaptive learning laws. It provides an introduction of the most recent development of robot-assisted
lower limb rehabilitation, and also summarizes the research gaps and potential future directions.
The rest of paper is organized as follows. Section 2 compares different mechanisms of lower limb
rehabilitation robots. In Section 3, the robot-assisted training modes for different recovery stages
are analysed. Section 4 presents recent development of robotic control strategies, including position
control, impedance control, biofeedback control and adaptive control. In Section 5, the research
limitations and future directions are discussed and concluded.

2 Mechanisms of Lower Limb Rehabilitation Robots

Mechanical design is the basis of robot-assisted rehabilitation system, and should follow a basic
principle of keeping its structure simple, lightweight, and easy to control. In recent years, various
types of robots have been developed for lower limb rehabilitation. Generally, these robots can be
divided into two categories: exoskeleton and end-effector robots [15]. For example, Lokomat [16],
BLEEX [17] and LOPES [18, 19] are typical exoskeleton robots, while Rutgers Ankle [20], and Haptic
Walker [21] are end-effector robots. According to their mechanisms and rehabilitation principles,
exoskeleton robots can be grouped as the treadmill-based devices and the orthosis-based robots,
while the end-effector robots have footplates-based and platform-based types. An overview of
recent representative robots and their characteristics is demonstrated in Table 1.



Table 1 Overview of recent lower limb rehabilitation robots

Groups Devices Institutions/researchers Actuated DOF* Characteristics
Treadmill Lokomat [16] Hocoma, Switzerland Two-leg DOFs for Treadmill training with body weight support
based treadmill walking system; it provides powered assistance at

exoskeleton
robots

the hip and knee by strapping patient’s legs.

Lokohelp [22]

Woodway & Lokohelp
Group, Germany

Two-leg DOFs for
walking with levers
on treadmill

It can be placed on a treadmill with weight
support mechanism; it transmits movement
of treadmill to levers for patients to track.

LOPES [18, 19]

Veneman et al. from
University of Twente,
Netherlands

Three rotational
DOFs in each leg for
walking on treadmill

A leg exoskeleton containing three actuated
rotational joints: two at the hip and one at
the knee; it can move in parallel with the
legs when walking on a treadmill.

ALEX [23] Banala and Agrawal et Seven DOFs for It is a powered leg orthosis with actuators at
al. from University of translations and hip and knee joints; it provides assistance to
Delaware, US rotation of a leg the patient walking on a treadmill.
Leg orthoses AAFO [24] Blaya and Herr from Two motion DOFs It is an active ankle-foot orthosis, uses SEA
and Massachusetts Institute  for ankle joint as the actuation; ankle joint was fabricated
exoskeletons of Technology (MIT) to fit; allows free motion in sagittal plane.
KAFO [25] Sawicki and Ferris from Free motion DOFsin It is a knee-ankle-foot orthosis; six artificial
University of Michigan, sagittal plane for pneumatic muscles are attached to orthosis
us ankle and knee to power ankle and knee movements.
HAL [26] Tsukuba University & Full-body It is a full-body exoskeleton for rehabilitation

Cyberdyne, Japan

exoskeleton for
arms, legs, torso

and heavy works support; and EMG* signals
are used to map patient’s intention.

BLEEX [17] [27]

Kazerooni et al. from

University of California,

us

Seven DOFs for
each leg in hip, knee
and ankle joints

It is a pair of wearable robotic legs
developed to increase the abilities of the
wearer, provide power to carry major loads.

Foot plates
based
end-effector

Gait Trainer GTI
[28]

Reha-Stim, Germany

Two footplates for
foot/leg movement

Patient’s feet are positioned on footplates
with movements are controlled to simulate
foot motion during stance and swing.

devices Haptic Walker Hesse et al. from Arbitrary movement It allows simulation of various gait patterns
[21] Charité University DOFs for two feet and walking speeds; force/torque sensors
Hospital, Germany are located under each footplate.
G-EO-Systems Reha Technology AG, Two footplates for It is an end-effector gait robot with freely
[29] Switzerland walking and programmable footplates; can be controlled
climbing DOFs to stimulate walking and climbing stairs.
Platform Rutgers Ankle Girone et al. from Six DOFs for ankle It supplies 6-DOF resistive forces to patient's
based [20] Rutgers University, US and foot basedona  ankle with virtual reality, and later extended
end-effector Stewart platform to a dual platform for gait rehabilitation.
robots - - - - ——
ARBOT [30, 31] Saglia et al. from Istituto  Two ankle DOFs in It is a parallel robot for ankle rehabilitation

Italiano di Tecnologia,
Italy

plantar/dorsiflexion,
inversion/eversion

with patient’s foot fixed on the moving
platform, a customized linear actuator used.

Parallel Ankle
robots [32, 33]

Xie et al. from The

University of Auckland,

New Zealand

Three ankle DOFs
provided by 4-axis
parallel robot

A 4-link robot driven by DC motor actuators
and a 4-axis parallel robot driven by
pneumatic muscles designed for ankle
rehabilitation.




2.1 Exoskeleton robots for lower limb rehabilitation
1) Treadmill based exoskeleton robots

Treadmill based exoskeleton robots usually consists of a body weight support system and a
lower limb exoskeleton patients wear while walking on a treadmill frame. The Lokomat, developed
by Hocoma (Zurich, Switzerland), is a typical treadmill based exoskeleton with body weight support
mechanism (Fig. 1(a)). The patient’s legs are strapped into an adjustable frame to provide powered
assistance at the hip and knee [34]. The Lokohelp group developed a lower limb rehabilitation robot
with structure similar to Lokomat [22]. It transmits the treadmill movement to levers positioned on
both sides of the device, so the simulation of gait is achieved by the track of the levers [35]. This
robot can assist the patient to perform active training. Another important body-weight supported
treadmill robot system is AutoAmbulator (Healthsouth, US), in which robotic arms are strapped to
the patient’s legs. However, few literatures are reported by using this device. Recently, a new gait
training robot LOPES [18] was developed by University of Twente, as shown in Fig. 1(b). It combines
a translatable and 2-D-actuated pelvis segment with a leg exoskeleton containing three actuated
rotational joints. LOPES can move in parallel with the legs of a person while walking on a treadmill.
Researchers from the University of Delaware have developed an Active Leg EXoskeleton (ALEX) [23].
It is a powered leg orthosis with linear actuators at the hip and knee joints, and with a force-field
controller developed to provide assistance to the patient during walking [36]. Though treadmill-
based robotic devices are potentially beneficial for the patient in terms of energy expenditure
reduction, the operation of these robots often requires more than two operators, thus considerable
efforts are required. Another common problem existing in these devices is the weight support
mechanism, which may limit patient’s free movements initiated by themselves.

2) Leg orthoses and exoskeletons

Leg orthoses are actuated wearable exoskeletons that can provide walk power assistance. Blaya
and Herr from Massachusetts Institute of Technology developed an Active Ankle-Foot Orthosis
(AAFO) (Fig. 2(a)) [24], which is one of the main devices designed for treating a gait pathology known
as drop foot. Yet, actuation system and control scheme in this robot need further improvements.
The artificial pneumatic muscles may be a good choice for exoskeleton orthoses because of their
force-to-weight ratio and intrinsic safety. Sawicki and Ferris at University of Michigan developed a
Knee-Ankle-Foot-Orthosis (KAFO) powered by artificial pneumatic muscles, as shown in Fig. 2(b) [25].
It is used for motor rehabilitation to provide flexion and extension torque during human walking.
Fleischer et al. from Berlin University of Technology developed a powered orthosis [37], in which
intended motions of the subject are evaluated through EMG signals. Hybrid Assistive Limb (HAL) is a
full-body exoskeleton developed by Tsukuba University and Cyberdyne for rehabilitation and heavy
support [26]. EMG signals are also used in HAL to measure the level of human-robot interaction.
However, this technique is quite difficult to achieve for paraplegic patients because of the paralyzed
muscles that cannot generate effective EMG signals. Berkley Lower Extremity Exoskeleton (BLEEX) is
an exoskeleton developed by University of California to increase the abilities of the wearer in term of
both strength and endurance [27]. There are seven DOFs in BLEEX, four of which are actuated by
hydraulic actuators. Although the flexible gait rehabilitation can be achieved by these orthotic
systems, the shortcomings such as high energy cost also hinder their wide applications. On the other
hand, control parameters of the exoskeleton ortheses also need to be frequently adjusted, while the
proactive interaction between the robot and user makes the tuning process challenging.



(a) Lokomat [38] (b) LOPES [39]

Fig. 1. Treadmill-based exoskeleton robots. (a) is reprinted from [38], with permission from Elsevier.
(b) is reprinted from [39], an Open Access article with unrestricted use permission.
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Fig. 2. Leg orthoses and exoskeletons. (a) is reprinted from [40], with permission from Elsevier, (b) is
is reprinted from [25], an Open Access article with unrestricted use permission.

2.2 End-effector robots for lower limb rehabilitation
1) Foot plates based end-effector devices

For this kind of robot, patient’s feet will be positioned on the foot plates, which are controlled
by programmable systems to stimulate different phases of gait. An example of footplates based
robots is the Gait Trainer GTI (Reha-Stim, Germany) (Fig. 3(a)) [28], which is a servo-controlled gait
trainer to help the patient recover his/her lower limb movement ability. It is considered as one of
the pioneering robotic systems for rehabilitation [8]. Recently, Hesse et al. designed a lower limb
rehabilitation robot called Haptic Walker, which consists of two mechanical plates that can drive the
patient’s limb to achieve arbitrary movement [21], as presented in Fig. 3(b). Haptic Walker is a major
redesign and evolution of GTI. It allows simulation of various gait patterns and adjustable walking
speeds. G-EO-Systems (Reha Technology AG, Switzerland) was recently used in a study to simulate
the walking and stairs climbing [29]. It consists of two footplates, which can be programmed in



vertical and horizontal movements to realize walking and climbing exercise. The G-EO-Systems
followed the intention of the Haptic Walker, but specified with smaller dimensions [41]. In these
developed robotic devices, however, there are few reports on their ability to stimulate different
terrain types. Yoon et al. [42] presented a 6-DOF gait rehabilitation robot, with its foot end-effector
designed as a parallel mechanism driven by two linear actuators. It allows patients to update their
walking velocity on various terrain types such as walking, stairs and slope climbing. Compared to
exoskeleton-based systems, which are able to support the knee during the stance phase, the end-
effector based devices, however, may require manual assistance during such a phase.

(a) Gait Trainer GTI [28] (b) Haptic Walker [28]
Fig. 3. Footplates based end-effector devices. (a) and (b)are both reprinted from [28], an Open
Access article with unrestricted use permission.

Q
hoving platform 2

(a) 4-axis redundant parallel robot [33] (b) Rutgers Ankle [20]

Fig. 4. Platform based end-effector robots. (a) is reprinted from [33], with permission from Elsevier.
(b) is reprinted from [20], with permission from Springer.



2) Platform based end-effector robots

Platform based robots enable the patient to be stationary, just with his/her lower limb (mostly
feet) fixed on the platform, which is controlled to perform training programme. Thanks to the
features of simple structure and superior adaptability, parallel robots have become more and more
popular in platform based medical robots. A parallel robot for ankle rehabilitation was proposed in
Istituto Italiano di Tecnologia (lIT) to carry out the required exercises, and a new customized linear
actuator was designed [30]. However, the device only allows movements in plantar/dorsiflexion and
inversion/eversion. Xie et al. from University of Auckland have developed parallel robots to perform
ankle rehabilitation in 3 DOFs [32]. Firstly, a 4-link robot driven by DC motor actuators was designed,
then a wearable 4-axis redundant parallel robot driven by artificial pneumatic muscles with flexible
and lightweight features (Fig. 4(a)) [33]. However, there are some disadvantages of using artificial
pneumatic muscles. For instance, the control methods may become relatively complex when using
artificial pneumatic muscles. Moreover, the control bandwidth of artificial pneumatic muscles is
relatively low [11] compared to electric actuation one. Rutgers Ankle is a typical ankle rehabilitation
robot based on Stewart platform, as presented in Fig. 4(b) [20]. The movement is realized by the
coordination control of its six electric cylinders. In [43], the system was further extended to a dual
Stewart platform configuration to be used for gait simulation and rehabilitation.

In comparison, exoskeleton robots usually have to be fixed with various parts of human limb to
pose different force/torque on different parts at the same time. However, such attachment of
exoskeletons would not necessarily good for functional recovery of patients, due to their drawbacks
of inferior adaptability to different patients, and the design of exoskeleton robots also is usually
expensive and time-consuming [44]. In contrast, end-effector robots usually contact with the
patient’s body at a certain point, making this kind of robots easy to design and control. Since there is
no restriction on the human movement redundancy, the end-effector robots are more easily
adaptable to different patients [45]. A recent review [46] study investigating differences between
end-effectors and exoskeleton devices found that an end-effector approach may be more favourable
for gait training after stroke, although the reason for this superiority are not clear yet [35].

3 Robot-Assisted Training Modes

The effectiveness of robot-assisted rehabilitation and therapy largely depends on its ability to assist
patients” movement in a number of different modes according to patients’ different recovery stages
[47]. The appropriate training mode should be determined by physiotherapist’s experience and
subject’s disability levels. As stated in study [30], the rehabilitation process can generally be divided
into three stages, namely, the preliminary, intermediate and advanced stages. And during these
stages the patient will gradually regain the range of motion and strength at the injured limb or joint.
Thus, the patient needs to receive passive and active exercises in different recovery phases. For
example, in early stage of rehabilitation, passive mode should be conducted to help patients to track
the predefined trajectories to improve the movement ability and reduce muscle atrophy [48]. After a
training period once the patient has gained certain degree of strength, active mode should be
carried out to encourage patients to trigger the robot assistance by their own active efforts. In this
situation, active assist mode means the robot provides assistance when the subject has some
voluntary to move but there are inadequate movements, while active resist mode means the subject
performs the exercise against a resistive force provided by the robot when muscle strengthening
exercises are required [35]. In late rehabilitation stage, the robot is to guarantee patient’s balance in



the training process and record data for further analysis. Fig. 5 presents two typical control modes
for rehabilitation robots: passive mode and active mode [49]. These two mode controllers help the
subjects to move their limbs on the desired trajectories or provide assistance to complete the
desired tasks. The term for training modes may be stated diversely in different works, but the main
idea behind it is similar. A review of robotic training strategies done by Marchal-Crespo [7] employed
term “challenge-based” that is similar with the “active resistive” mode here. The “challenge-based"
mode refers to the strategy that aims to make patient’s movement tasks more challenging, usually
by exerting an additional resistive force to the participant's limb during the training process. Since
such a “challenge-based” or “resistance-based” mode would bring enormous benefits to participants
with a low level of impairment, many of existing robotic devices have introduced this training mode
as one of the most important therapy options to accelerate motor recovery.

Passive mode

exercise timing
control system session duration
number of repetitions

- trigger to the

sommosen sory
actuators

passive afferences

mobilisation

Active mode
/;namsenscry afferen:e\ i 0

control system

instructions and ’k\,__
visual biofeedback *
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maobilisation /J
SEMG from trigger to the /
tibilalis anterior b 7
-

- “ active

movement

Fig. 5. Passive mode and active mode. Reprinted from [49], with permission from Springer.

Recently, more subdivided control modes for lower limb rehabilitation have been proposed. An
overview of modes for rehabilitation robot is illustrated in Table 2. Jamwal et al. designed an ankle
sprains rehabilitation program that mainly included three training modes for different treatment
stages [48]. Considering acute rehabilitation phase after the ankle injuries, an initial stage was added
to promote healing of injured tissues before robotic training begins. Then, “passive” mode involving
pain-free ROM exercise and “active” muscle strengthening exercise with adjustable resistance level
were carried out. To investigate the effectiveness of such control modes on different devices and
different limb joints, they have also applied the training modes to a robotic gait orthosis [50]. For
severely impaired subjects, position control was performed as “inactive” mode in which the orthosis
was controlled to guide patient’s leg on the reference trajectories. In “active” mode, the orthosis
provided less assistance to the subject who was capable of having more kinematic freedoms and
contributing more voluntary efforts in the gait training process [51]. Saglia et al. from Istituto ltaliano
di Tecnologia also employed both patient-passive and patient-active exercise modes on their ankle
rehabilitation robot ARBOT [31]. In this study, a passive exercise was performed in early stage of
therapy when the patient cannot move his or her foot alone. While two different active exercise
modes were designed to meet the requirements of particular rehabilitation phases. In moderate



stage when patient had certain torque levels, the active “assistive” mode was conducted to provide
additional efforts to patient’s movement. In the last stage of rehabilitation, active “resistive” mode
was implemented to undergo proprioceptive training and isometric muscle strengthening exercise.
Veneman et al. from University of Twente allowed both “patient-in-charge” and “robot-in-charge”
modes in a newly developed gait rehabilitation robot LOPES [18]. In fact, these two control modes
are almost consistent with the patient-active and patient-passive modes mentioned previously. The
robot-in-charge mode is actually a position control mode in which the robot is driven to guide the
inactive subject on a gait-like trajectory, while the patient-in-charge mode is dominated by the
subject who is able to walk freely within the device and control the robot at will. One distinguished
mode in LOPES is the “therapist-in-charge” mode, which is conducted between the patient-in-charge
and robot-in-charge mode, means that both patient’s own walking efforts and the robot assistance

level will be considered to select the most appropriate torques applied to the leg-joints.

Table 2 Overview of typical training modes for lower limb rehabilitation robot

Control modes

Description

Representative works

Outcomes

Passive mode

”ou

Refers to “inactive”, “position-control”
“robot-in-charge” mode; robot helps
the patient to track the predefined
trajectories to perform passive training

through repeated tracking control.

Ankle robot and gait orthesis,
Xie et al. [48] [50] [51]

ARBOT, Saglia et al. [30] [31]
LOPES, Veneman et al. [18]

Promote limb motor function
recovery and reduce muscle
atrophy by repeated
intensive exercise, but lack
patient’s motivation

Active mode

Also refers to as “patient-in-charge”
mode; robot modifies its trajectory or
assistance force when the subject has
some voluntary to move.

Ankle robot and gait orthesis by
Xie et al. [48] [50] [51]

LOPES, Veneman et al. [18]

Modify trajectory based on
patient’s intention, so that
the initiative motivation can
be greatly enhanced

Active assist mode

A kind of “active” mode, similar with
“therapist-in-charge” mode; patient
moves the limb without assistance first,
and when the criterion reaches a
threshold, the robot will be triggered.

ARBOT by Saglia et al. [30] [31]
LOPES, Veneman et al. [18]
Ankle robot, Pittaccio et al. [49]

Allow the patient to move
without robot first, so the
self- initiative movement
ability can be improved

Active resist mode

A kind of “active” mode; also refers to
“challenge-based”, “active-constrained”
mode; robot provides resistance force
when patient moves the limb; to make
the exercise more challenging.

ARBOT by Saglia et al. [30] [31]
Marchal-Crespo et al. [7]
Ankle robot, Pittaccio et al. [49]

Suitable for highly recovery
patients, resistance make the
movement more challenging
and can strengthen muscles

Other modes

“Bimanual” mode to complete
mirror-image movements; or the
isotonic, isokinetic, and isokinetic
exercise modes that are inspired by
manual therapy types.

MIME (for upper limb) [52]
Physiotherabot [47]

Therapeutic-exercise-supporting
manipulator [53]

Developed from the view of
therapist, also attempt to
provide a certain assistance
or resistance level to user

Besides the common training modes used in robot-assisted rehabilitation as described above,

some newly developed modes have also been proposed due to their unusual robotic structures or
particular training purposes. For example, motions of the unimpaired arm can be recorded and used
to control the impaired limb via a robotic device by adopting the so-called “bilateral” mode. MIME is
a typical and well known robotic rehabilitation device that employs this training mode. In fact, four
robot assistance modes have been employed by the MIME system [52]: passive mode (the subject
relaxed while robot moved the limb to follow a predetermined trajectory), active-assisted mode



(patient reached an initial position to trigger the robot assistance), active-constrained mode (the
robot provided a viscous resistance in the desired direction and spring-like forces in others), and
bimanual mode (robot measured the unimpaired limb’s motion and controlled the affected forearm
to complete bimanual mirror-image movements). Another tendency in robot-assisted rehabilitation
is to design the training modes by considering the conventional therapeutic exercise types. Study [47]
presented a series of training modes inspired by the exercise types manually provided by a therapist.
The isotonic exercise (moving the resistance through a range of motion), isokinetic exercise (fixed
joint angle against fixed resistance), isokinetic exercise (stable movement speed with maximum
resistance), as well as manual exercise (active and passive exercises performed by a physiotherapist)
modes were realized by using a lower limb rehabilitation robot Physiotherabot. Likewise, study [53]
also offered an isokinetic exercise treatment of knee joint that is able to provide variable resistance
to a movement with constant speed. Although these new training modes are developed from the
perspective of therapists, the connotation in them are similar, as they also attempt to provide a
certain level of assistance or resistance to the patient during robotic therapy.

4 Control Strategies for Robot-Assisted Rehabilitation

The goal of robot-assisted lower limb rehabilitation is to reinstate neuroplasticity by using various
control strategies to improve the motor function of patient’s lower limb. Control strategies of robots
involving physical interaction with patients’ lower limb are thus the most important issue. In recent
years, people have tried to extract more useful information from patient’s bio-signals which can
effectively reflect patient’s movement intention and muscle activation. Thus, one of the most
popular areas is to integrate the hybrid data fusion (position, force, and bio-signals) and adaptive
tuning law into robot control to make it be adaptable to particular patients. With the consideration
of training purpose and controller development progress, the control strategies reviewed in this
section can generally be divided into four categories: position tracking control, force and impedance
control, bio-signals based control and adaptive control. An overview of control strategies for
robot-assisted rehabilitation in recent years is summarized in Table 3.

4.1 Position-based tracking control

Position based trajectory tracking control is important in early rehabilitation stage when
“passive” mode is required, which can help the impaired limb achieve continuous and repetitive
training. The primary issue needs to be addressed in position control is how to generate a proper
trajectory. Emken et al. proposed a trajectory generation method by using “teach-and-replay”
technique with the ambulation-assisting robot ARTHUR [54]. Specifically, the device was firstly
passively attached to the limb and the stepping kinematics will be recorded during manual
assistance. The recorded kinematics was then replayed to generate a participant-specific stepping
trajectory by using proportional-derivative (PD) controller. This method is able to reproduce the gait
patterns in high accuracy with the subject’s stepping trajectory slightly altered only. Recently, a new
method called Complementary Limb Motion Estimation (CLME) for online trajectory generation has
been introduced by the designer of LOPES gait rehabilitation robot [55]. In this study, the reference
motion for the affected leg was generated based on the movements of the other unimpaired leg by
adopting instantaneous mapping between them. However, such trajectory generation algorithm can
only be applied for hemiparetic subjects. Apart from the path planning methods to generate a fixed
reference trajectory, another strategy that allows both spatial and temporal deviations from the



Table 3 Overview of control strategies for robot-assisted rehabilitation

Control Methods Characteristics Representative studies Outcomes
strategies
Position Trajectory It is the basis for other strategies; Emken et al. [54], Vallery et Essential in early rehabilitation,
control tracking control repeated passive training can be al. [55], Duschau-Wicke et al help to achieve continuous and
achieved by this strategy; the [56], Saglia et al. [31], repetitive training but in a
trajectory generation and high Jamwal et al. [48], Hussain et passive way, lacking initiatives
control accuracy are key issues. al. [50], Beyl et al. [57]
Force and Hybrid It can be applied for strengthening Ju et al. [58], Simon et al. Robot moves along the desired
impedance  position/force exercises; selection matrix can be [59], Deutsch et al. [60], trajectory and maintains certain
control control used to divide the control into an Bernhardt et al. [61], Banala interaction force, thus can help
independent position control loop et al. [62], Duschau-Wicke et strengthen patient’s muscles
and a force control loop. al [56]
Impedance It is one of the most appropriate Duschau-Wicke et al. [56], Human-robot interaction will be
control approaches for rehabilitation; can Veneman et al. [18], Hussain enhanced, the impedance can
regulate the dynamic relationship et al. [51], Roy et al. [63], be adjusted to make the robot
between robot position and contact  Emken et al. [64], Koopman compliant, flexible, adaptable
force; more and more devices are et al. [65], Agrawal et al. [66]  to patient’s recovery needs
using impedance control algorithms.
EMG-based EMG-triggered It is a muscular activation controlled  Krebs et al. [67], Kiguchi et It encourages self-initiated
control control method; predict patient’s motion al. [68], Kawamoto et al. movement by patients, but
intention in advance and the robot [69], Fleischer et al. [70], Yin there is no interaction during
assistance will be triggered when it etal. [71] the robot movement until the
reaches a certain threshold. next EMG trigger occurs
EMG-based It utilizes EMG signals to decode the  Song et al. [72] [73], Komada  Patient can keep controlling the
continuous human motion, e.g. estimate the et al. [53], Lenzi et al. [74], robot during exercise, instead
control joint angle or torque; control robot Sawicki and Ferris [25, 75], of just triggering the robot
in a continuous way, or provide Fan et al. [76] once, can provide a continuous
continuous torque assistance interaction to the patient
proportional to EMG signals.
Adaptive Movement It can make the robot’s behaviour Emken et al. [54], Hussain et Patient can take the maximum
control ability-based more flexible and adjustable to the al. [51], Riener et al. [77], efforts instead of relying on

adaptive control

patient’s ability and participation;
set the robot assistance level to
patient's movement ability in terms
of active force or tracking errors.

Wolbrecht et al. [78], Blaya
and Herr [24]

robot, by adjusting the robot
impedance and assistance level
when patient shows a better
movement ability

EMG-based
evaluation and
adaptive control

It enables the robot be controlled in
a more natural way using muscles; it
builds the relationship between
EMG signals and muscle activity and
adjusts the robot assistance level to
patient's muscle recovery needs.

Colombo et al. [79], Krebs et
al. [67], Kiguchi et al. [80,
81], Zhang et al. [82],
Kwakkel et al. [9]

Robot assistance force and
impedance can be adaptable to
patient’s muscle activity level,
enhance the robot’s adaptive
adaptability and improve the
human-machine interaction

Assist-as-needed
control

It is one of the most prevailing
paradigms to encourage patients’
active participation; also refers to as
cooperative, adaptive, interactive
control; It considers the patient's
intention rather than imposing an
inflexible control strategy; it can do
the exercise like a physiotherapist.

Marchal-Crespo and
Reinkensmeyer [7], Riener et
al. [77] [83], Duschau-Wicke
et al [56], Banala et al. [62],
Fleerkotte et al. [39], Hogan
and Krebs [84], Wolbrecht et
al. [78]

AAN methods can be adaptive
to patients’ needs and assist the
movement only as much as
needed, encouraging them to
take maximal voluntary efforts




given trajectory is “path control” strategy. It was proposed by Duschau-Wicke et al. for Lokomat
robot assisted gait rehabilitation [56], in order to provide compliant virtual walls around the desired
spatial path to keep the patient’s legs within a physiologically meaningful “tunnel”. The initial
purpose of this “path control” is to realize a kind of “patient-cooperative” strategy that allows
patients to influence their leg movements actively, which is actually an impedance-based control.
We will take a more detailed discussion on this in following parts.

Once the desired motion pattern is determined, trajectory tracking control strategy must be
developed to guide the patient’s limbs on the reference trajectories. The implementation of
trajectory control strategy largely depends on the robot’s mechanical design and structure. The
ankle rehabilitation robot ARBOT developed by Saglia et al. is basically a platform-based robot with
3UPS/U1 parallel mechanism [31]. A computed-torque controller with inverse dynamics was
implemented to follow the reference trajectory. In comparison, study [6] described a lower limber
exoskeleton with 4 DOFs in hip, knee, and ankle. Since the exoskeleton robot can be regarded as a
nonlinear dynamical system with uncertainties from human limb and robot, an adaptive and robust
learning control scheme was developed to solve time-varying uncertainties in the robotic mode.
However, rehabilitation robot is a dynamic and uncertain system. Hence, it may be hard to achieve
ideal results by using “model-based” controllers, even though an additional controller can be used to
compensate for modelling errors. Jamwal et al. developed a wearable parallel robot for ankle
rehabilitation driven by pneumatic muscle actuators (PMAs) [48]. A fuzzy logic controller based on
Mamdani inference was designed to work with a disturbance observer to compensate the nonlinear
characteristics of PMAs. Though the robot was able to track the desired trajectories, incoherent
tracking errors were recorded, especially when interacted with the ankle. Moreover, fuzzy controller
has its inherent limitations, e.g., the fuzzy rules are always hard to formulate and the inference
process may take a long time. Xie’s group further presented a chattering-free robust variable
structure based trajectory tracking controller for a robotic gait orthosis powered by PMAs [50]. Such
control scheme can achieve a quite satisfied tracking performance, however, this study did not
consider the gait trajectory with changeable speed that is very important in different human walking
phases. As changeable gait speed may bring unstable and unsafe factors to the robot control, large
deviation errors will probably happen in this situation. Considering safety prerequisites for training,
study [57] proposed a proxy-based sliding mode controller (PSMC) for a gait exoskeleton with its
knee joint also powered by pneumatic artificial muscles. This PSMC can potentially be a safe
“robot-in-charge” control strategy since it combines both a good tracking accuracy to the normal
reference trajectory and also a safe response to large position errors. However, the position based
tracking controller only guides the patient’s limb strictly follow on a predefined trajectory rather
than a trajectory customized specifically to the patient, without taking into account the patient’s
active interaction, thus it may reduce the participant’s voluntary participation and motivation.

4.2 Force and impedance control

1) Hybrid position/force control

Patients are usually trained in a passive way and lack initiatives and motivations in purely
position-based tracking control. Fixed repetitive training might cause inactive response from the
patient and result in negative training effects. Hence, hybrid position/force control considering the
interaction between human subject and the device plays an important role in training. This method
can be applied for strengthening exercises. Ju et al. designed a hybrid position and force controller



which can guide the patient move along a linear or circular trajectory and maintain a constant
contact force [58]. Since the system may become unstable in this direct force and position addition
control scheme, Simon et al. from University of Michigan introduced a novel method of controlling
the interaction force during lower limb extensions [59]. The purpose of this study is to provide the
target resistance force to the impaired limb for improving force symmetry in the limbs. Similarly, the
developers of Rutgers Ankle also proposed a high-level position and force controller to supply 6-DOF
resistive forces on the patient’s foot, in response to virtual reality-based exercises [60]. The
established haptic interface was used to read the foot position and orientation and then exerted
resistive forces for lower-extremity training with an interactive virtual environment (VE) simulation.
A distinct advantage of such hybrid position/force strategy is that the robot can be controlled to
move along the desired trajectory and maintain a certain human-robot contact force, which can help
strengthen patient’s muscles and enhance recovery.

However, such control strategies only allow the participant to exert certain resistance force
along a fixed trajectory and do not allow voluntary active movements of the patient. Riener’s group
presented a new hybrid force/position control architecture to enhance active contribution of the
patient in the gait robot Lokomat [61]. This control structure consisted of a closed-loop PD position
controller and a force controller, and these two loops would be switched between swing and stance
phases. The required robot assistance force, calculated by using a dynamic model, was controlled to
guide participant’s leg and would be reduced by a certain percentage to enable patient’s voluntary
walk. The great advantage of this strategy is that the patient has maximum freedom to change the
gait trajectories. However, it must be noted that the arbitrary modification of gait pattern may result
in an un-physiological path that may cause secondary injuries to the patient’s limb. To address this
problem, adopting a new force/position control method that is able to move the patient along the
physiological trajectory and also exert normal forces seems an optimal choice. ALEX is an active leg
exoskeleton for gait rehabilitation controlled in such an approach implemented by Banala et al. [62].
A force-field controller was applied in this study to apply suitable interaction force between the
subject and the orthosis to help the leg move on a desired trajectory. The goal of this controller is to
assist or resist the motion of the leg by providing less resistance when the subject moves on the
desired gait trajectory and higher impedance if deviates from it. This kind of method also can be
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called “virtual tunnel” approach, since in this scheme the tangential force is controlled to move
patient’s limb along the trajectory and the normal force is used to keep the limb move within a
virtual wall [65]. A similar virtual tunnel strategy is implemented in the Lokomat by Duschau-Wicke
et al [56]. In this study, a path control strategy with “virtual walls” was proposed to constrain the
patient leg’s movement within a region of “tunnel” around the desired spatial path in joint space. In
fact, this is a kind of “patient-cooperative” strategy that allows patients to influence the gait pattern,
but ensures to limit the path within the range of being physiologically meaningful [10]. This kind of

cooperative control strategies will be focused in section 4.4.
2) Impedance control

To encourage active participation and allow patient’s natural variability, real-time adjustment
of desired dynamic relationship between robot position and contact force is essential. Impedance
control strategy is one of the most appropriate approaches to achieve this purpose [85]. Nowadays,
more and more robotic devices control the interaction forces by using impedance control algorithms.
MIT-Manus utilized impedance model to adjust the robot compliance [66], and Lokomat also used



impedance controller to regulate the patient’s gait speed and traction force for each leg [56]. In [18],
“robot-in-charge” and “patient-in-charge” control strategies were implemented for LOPES by using
impedance controller to enhance patient’s active participation. However, impedance control also
introduces new challenges: the impedance parameters should not be always fixed. As different
impedance parameters will make the robot reveal different compliance, low impedance levels
increase the risk that the patient move beyond the physiological range of motion. In contrast, high
impedance parameters will probably force the patient in a passive state and hardly achieve active
training [55, 86]. As the patient's movement ability is changing over time, the impedance parameters
have to be re-selected to match patients’ capabilities and progress [65]. So, adaptive methods are
urgently necessary in rehabilitation robots to guarantee the dynamic performance. Xie’s group [50]
have proposed an adaptive impedance controller with maximum and minimum compliance modes.
In “minimum compliance” mode, the participant is completely passive and the robotic orthosis is run
under 100% force to drive the limb on a reference trajectory; while in “maximum compliance” mode,
the human has more freedom and can drive the robot to deviate from the reference trajectory. This
compliance mode is similar with “robot-in-charge” and “patient-in-charge” mode proposed by
Veneman et al. [18]. But, a common limitation existing in both is the discontinuous model, just like
to turn on or off the robot assistance, rather than offering a seamless impedance tuning process.

To tackle this problem, the patient’s disability level or human-robot interaction has to be
estimated and used to adapt the robotic compliance. As a result, Xie’s group further proposed an
adaptive impedance controller for the robotic orthosis to provide interactive gait training [51]. The
objective of this adaptation law is to adjust robot impedance based on subjects’ active joint torque
estimated from human-robot interaction force. However, for particular patients such as stroke
survivors with foot drop problems, this torque estimation is not available for impedance tuning any
more. To facilitate an accurate estimation of ankle stiffness, Massachusetts Institute of Technology
(MIT) developed a novel robot for ankle assessment and rehabilitation [63]. A simple approach by
using this robot is to statically measure the angular displacements and the total torques and then
obtain the passive stiffness by calculating the ratio of torque to angular displacement. It potentially
provides a clinical measurement tool to estimate ankle stiffness that can be used to adjust the
impedance level of robotic device for variable recovery phases. Moreover, Koopman et al. designed
an impedance controlled exoskeleton (LOPES) for gait assistance [65], in which a Virtual Model
Controller (VMC) was used to select proper subtasks according to the capabilities and progress of
the patient. In addition, an adaptive algorithm was employed to shape the amount of support within
each subtask automatically by modifying the virtual stiffness at each percentage of the gait cycle.
However, impedance method is usually realized based on force-triggered assistance, which means
the patient must have sufficient voluntary force first, and then the robot assistance can be triggered.
In this way, the control process may inevitably be divided into two separated parts: a patient-driven
part and a robot-driven part, instead of providing a seamless robot assistance [78]. Although the
continuous robot assistance can be realized by adopting online trajectory adaptation method, which
means keep sensing patient’s interaction force and modifying the trajectory in a continuous way.
However, the issue of trajectory adaptation based on adaptive impedance model is still unresolved,
as the modified trajectory may result in an un-physiological limb movement pattern.

4.3 Bio-signals based control

Bio-signals contain more useful information about human limb movements. It enables the robot
to be controlled in a more natural way by using EMG signals recorded from participant’s muscles. It



has been found that a considerable correlation exists between EMG signals, limb movement, and
muscle activities [87]. Therefore, with the recent development of bio-signals processing techniques,
the robot control based on bio-signals has become a popular research area [88, 89], in which EMG-
triggered and continuous control are two typical EMG based strategies.

1) EMG-triggered control

EMG signals are generated before limb muscle contraction, so it can be used to predict the
movement intention in advance [74]. For example, Krebs et al. [67] proposed a performance-based
progressive robot control mode, which allowed the patient to move the limb without assistance first,
and when the EMG value reached a certain threshold, the robot assistance would be triggered. In
order to realize EMG-triggered control, patient’s movement intention must be identified accurately
by using EMG features extraction and pattern recognition methods [90]. Among these classification
algorithms, neural networks are widely used in recent studies to improve the recognition accuracy
[68, 91-93]. Kiguchi et al. designed a neuro-fuzzy controller to identify the movement pattern of the
forearm by using EMG signals [68], and a probabilistic neural network was proposed in [91] for EMG
patterns discrimination. In [92, 93], wavelet packet features were used to extract useful information
from EMG, and the gesture mapping relationship was established by using BP neural network, too.
However, these methods are complicated and require huge amount of signal samples, making the
real-time performance of the EMG controller unsatisfied. On the other hand, since the strict
requirement of the real-time control for the lower extremity is different from that of the upper limb,
there have been relatively few studies that have used powered robotic devices for the lower limbs to
study the neural control [94]. For the lower exoskeleton system HAL, EMG signals were used to
measure the human-robot interaction and estimate the intention by discovering the relationship
between joint torque and corresponding EMG signals [69]. In order to make the feature extraction
more precise and the recognition result more reliable, new methods need to be introduced to
decode participant’s lower limb motion. Study [95] describes an intent recognition approach for a
powered lower limb prosthesis by using prosthesis sensor data. The time-based features of
prosthesis mechanical signals were extracted and used to train intent models such as standing,
sitting, or walking. Fleischer et al. presented a method to calculate the human gait pattern intention
during walking for an exoskeleton by combining EMG signals and pose sensors [70]. The EMG signals
were used to calculate the muscle forces and the position data to obtain the gait posture. The
calculated muscle forces were then used to estimate the knee torque and eventually the angular
acceleration [11]. Although EMG-triggered control encourages self-initiated movement by patients,
but, when the robot is driven to provide assistance after being triggered, typically passive training
will be performed in EMG-triggered control to achieve the necessary movement, so the patient is
not in a fully compliant environment when assistance is provided.

2) EMG-based continuous control

In EMG-triggered control mode, the robot would operate with a predefined trajectory after
being activated, which had no interaction with the human limbs during this period until the time
allowed for the next trigger event. This kind of “on-off” control might limit the interaction between
the external assistance and the EMG signals that indicate participant’s active intention. In order to
resolve this problem, EMG-based continuous control methods are developed recently to improve
the patient-active performance. Song et al. developed a myoelectric control robotic system to
provide continuous stretching assistance torque whenever the EMG signals exist [72]. The provided



assistance driven by myoelectric signals was controlled to be proportional to the amplitude of EMG
signals [73]. An advantage of this continuous proportional myoelectric control is it provided more
opportunities for subjects to interact with the device interaction during the whole motion. However,
the relationship between EMG and joint torque in the present study was simplified as a linear model,
and the muscle activity condition of the patient was not taken into account. Komada et al. described
a manipulator with a biofeedback function [53] that can estimate a person’s joint torque and muscle
activity by applying a musculoskeletal model. The modelling accuracy was then evaluated during
walking exercise by comparing it with the EMG waveforms. However, its usability is strongly limited,
since the musculoskeletal model widely varies between different users and sessions, which confine
their use to the laboratory environment. Lenzi et al. studied a new method to provide assistance
through a proportional EMG control applied a powered exoskeleton [74]. This system only roughly
estimated the user muscular torque without calibration, with results showing that subject’s EMG
signals can almost instantaneously adapt the robot assistance. However, similar with Song’s system,
only one degree of freedom robot-aided movement was tested in current study. Sawicki and Ferris
also applied an EMG proportional controller to a knee ankle-foot orthosis (KAFO) with 3 DOFs [25].
Different from Lenzi’s robot, it is the pneumatic muscles of the orthosis that were controlled by
using surface EMG signals from the user's muscles. In this control scheme, the air pressure of each
artificial pneumatic muscle was directly proportional to the EMG signal when the its amplitude was
between the minimum threshold and the maximum saturation [75]. Experiments have verified the
advantage of proportional myoelectric control in providing a direct link between the user’s nervous
system and the exoskeleton torque. However, proportional EMG control has specific disadvantages:
It might be difficult to obtain a reliable control command by using EMG signals only, due to the
surface electrode interface and the synergistic co-activation effects between different muscles.
Hence, mechanical sensors which can provide kinematic or dynamic data of the human-robot system
should also be equipped as compensation signals to the EMG. Study [71] presented an active control
method by using multi-source data fusion in a lower extremity exoskeleton system, bio-signals and
force information were integrated to decode the human motion and estimate the joint angle. This
work also indicates that hybrid data show a better performance than using EMG only.

4.4 Adaptive control strategies

Traditional robotic rehabilitation devices cannot perform training similar to manual assistance
provided by a therapist, who is able to match the individual needs and assist the patient’s movement
only as much as needed. Study [7, 9] suggest that the most effective control strategies for robotic
rehabilitation may include three categories, namely, impedance-based active control, EMG-based
active control and adaptive control based on patient’s conditions. And adaptive impedance control is
more likely to achieve better rehabilitation effects for its ability to make the robot’s behaviour more
flexible and adjustable to the patient’s capabilities, progress, and participation.

1) Movement ability-based adaptive control

Patient’s movement ability can be estimated from contact force/torque [31, 51], quantitative
efforts [39], or trajectory tracking errors [78]. By using adaptive controller, the robot assistance force
can be adjusted according to patient’s physical movement ability [39]. The adaptive impedance
controller applied in [51] adjusted the robot assistance according to human contact force, in which
the robot assistance was reduced when patient’s active force increased, and vice versa. This study is



supposed to be inspired by the “patient-cooperative” strategy proposed by Riener et al. [77]. This is
in fact an adaptive impedance controller that utilizes the patient’s contact force information to
adapt the robotic assistance and impedance level. The goal of this case is to enable the patient to
contribute as much as possible to the movement by changing the desired gait trajectory. However,
as explained above, a question with this approach is that the arbitrary deviation from the reference
trajectory may lead to an un-meaningful gait pattern. Emken et al. demonstrated an adaptive
learning control law that can adjust robot impedance according on a step-by-step basis [54], which
means the robot assistance was provided only when the subject exhibited trajectory errors. By
introducing such a forgetting process, more variability is allowed in each gait step to enable more
patient’s active participate during the robotic exercise. Therefore, a distinct advantage in Emken’s
work is that it allowed movement freedom within small errors while keeping the gait path along a
reasonable range of the desired trajectory. Meanwhile, such adaptive controllers with forgetting
factors are able to reduce the robot assistive force to a minimum, so as to avoid patient’s overly
relying on robot assistance. Wolbrecht et al. also introduced the forgetting factor to robot controller
[78], so the robot assistance can be reduced and stiffness and damping parameters can be adjusted
when patient’s self-initiated trajectory tracking error is small enough. Blaya and Herr proposed an
impedance-based adaptive control strategy to control their ankle-foot orthoses [24], with its
stiffness being adjustable to movement performance evaluated from previous sessions. The primary
purpose of such movement ability-based control is to maximize patient’s voluntary efforts. The
impedance can be automatically adjusted to make the robot maintain a high compliance and also
provide sufficient assistance to complete the assigned movement task.

2) EMG-based evaluation and adaptive control

Patient’s muscle activity and recovery conditions can be reflected by EMG signals, and the robot
assistance should be adaptable to patient’s muscle activity during robot-assisted therapy. Specifically,
in early rehabilitation stage, the muscle activity is in low level and muscle strength is weak, then the
robot damping should be small, so that patients can control the robot more easily; while in the late
stage, the impedance should increase when muscle activity level is high, so as to generate greater
interaction force and make the exercise more challenging. Colombo et al. described a robot device
that could adapt training to the individual by selecting motor tasks of different difficulty levels to
match each patient's ability [79]. This will bring more benefits to patient's training and recovery [52].
To sense patients’ muscle ability, many recent studies [81, 82] have focused on the estimation and
evaluation of muscle activity levels based on EMG signals. Isometric muscle model is traditionally
used to establish the nonlinear relationship between EMG and muscle forces [96]. However, human
body segments and muscles are unique to individual subjects, thus the universality of this model
cannot be guaranteed. Recently, neural networks have been adopted in robot-assisted rehabilitation
to map EMG signals to muscle forces. Choi et al. predicted the pinch force from EMG segments by
using artificial neural network [97], and a nonlinear force prediction model was established via BP
neural network [82]. Also, neuro-fuzzy matrix was adopted in [81] to build the relationship between
EMG and joint torque. However, the level of EMG readings is dependent on the skin impedance at
the electrodes location, which may vary between different training sessions. EMG signals have to be
combined with other sensor data to improve the evaluation effectiveness. Study [76] presented an
example of adaptive control strategy by integrating EMG signals and hybrid multi-source data fusion,
where EMG and force-position data are integrated to realize progressive exoskeleton-assisted
training. One critical issue in hybrid control is to introduce the assessment methods to evaluate the



patient’s muscle strength, activity level, fatigue, etc., so that the robot can perceive the patient’s
limb status and take appropriate control strategies. In [80], a hybrid control method was proposed
by estimating the patient’s joint torque from EMG signals and then to control the robot. Compared
to other methods, an important advantage of the EMG control is that the robot can be controlled in
a more natural way using his/her own muscles. Unfortunately, it is found that only a few studies
have introduced EMG signals into the whole robot control lifecycle.

3) Assist-as-needed control

To further increase patient’s motivation, there is a growing tendency towards assist-as-needed
control strategies, in which the system adaptively takes into account patient's ability and provides
assistance only when needed, rather than imposing an inflexible control strategy. Controllers based
on this principle are also referred to as “patient-cooperative”, “human-centred” or “progressive”
controllers [65]. A comprehensive review on this kind of control strategies for robotic training has
been conducted by Marchal-Crespo and Reinkensmeyer [7]. The “patient-cooperative” technique
was first proposed by Riener et al. [77] for Lokomat robot-aided gait rehabilitation. This strategy can
adapt the robotic assistance or adjust the reference trajectory to individual subject’s contribution.
The first experiment of “patient-cooperative” strategy utilized force sensors to detect the patient’s
muscular efforts to regulate the robotic assistance. This “patient-cooperative” approach is important
for patients’ rehabilitation for its capacity to stimulate patient’s active participation and increase the
motivation. Riener et al. also proposed a kind of “subject-centred” strategy [83] that can be
regarded as another expression of “patient-cooperative” approach, since both of them focused on
recording the patient’s movement efforts and using them to adapt the robot impedance and
assistance outputs. The “patient-cooperative” technique was further evolved into “assist-as-needed”
by introducing a “path control” method, in which a compliant virtual wall was developed to keep the
patient’s legs within a “tunnel” around the desired gait trajectory [56]. Similar AAN approaches were
applied by other robots such as ALEX [62]and LOPES [39]. In these systems, the desired motion was
determined by a healthy spatial path with a “virtual wall” or force field controller that can make the
robot be flexible and adaptive to user’s needs. Such AAN strategies are able to reduce the chance of
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the user becoming reliant on the support, since the stiffness and width of the “tunnel” can be
adapted to participant’s performance to make the robot provide assistance only as much as needed.
The concept of “assist-as-needed” is also a key part of "performance-based, progressive” control
strategy developed by Krebs et al. for MIT-Manus [67]. This study presented a novel algorithm that is
capable of continuously engaging the patient in the activity to maximize the chances to achieve
optimal motor recovery. This “progressive” therapy was developed by using an adaptive impedance
controller, whose parameters can be varied according to patients’ performance evaluated from last
several sessions [84]. Specifically, if the patient showed a higher performance with fewer movement
errors, the stiffness and the robot assistance were thereby reduced, and vice versa. In study [78], the
assist-as-needed scheme was achieved by using a force reducing term in order to adapt the robot
assistance force if the patient’s tracking errors were small. This “optimizing compliant” controller
allowed the robot to remain its supportive assistance to a minimum compliant while assisting the
patient to complete movement tasks. Nowadays, the assist-as-needed control concept has become
one of the most prevailing paradigms in order to encourage patients’ active participation during
robot-assisted rehabilitation. In this way, a physiotherapist-resembled therapy can be enabled by
continuously changing the interaction between robot and patient.



5 Discussion and Conclusion

Robot-assisted lower limb rehabilitation has a variety of advantages over traditional manual therapy
and training, and shows encouraging clinical outcomes and recovery efficiency. Existing studies have
also demonstrated the effectiveness of robot-assisted lower limb training. In this review, various
studies are conducted to compare different robotic mechanisms, training modes and control
strategies. As the rehabilitation robot directly contacts with the human limb, its workspace and
movement features must be considered when designing a mechanical structure. A superior feature
of exoskeletons for rehabilitation is the possibility to control the segments of the lower limb since it
can be worn by the participant. While the end-effector robots usually contact with the patient’s
body at a certain point, making this kind of robots more easily adaptable to different patients. In
order to improve clinical outcomes, rehabilitation robots should have various operation modes and
be adaptable to patients’ recovery conditions. The patient-active mode taking into account
participant’s active intention and voluntary efforts is supposed to be more effective than traditional
passive and repetitive training. Contrary to active assist mode, challenge-based robotic training aims
at rendering the task more challenging and demanding higher efforts so as to improve motor
function. As for the control strategies, impedance control becomes more and more popular in the
control of lower limb exoskeletons and platforms, and EMG signals have also been widely used to
estimate the human intention prior to the system control. Evidences from many studies show that
human-robot interaction is very important in encouraging patient’s recovery. An adaptive controller
that can sense patient’s status and tune the robot compliance to match particular patients is
believed to be the most efficient to realize “patient-cooperative” robotic therapy. In the meantime,
the assist-as-needed control concept has emerged to encourage the maximum participation of the
patient by providing only as much assistance as necessary.

Although most exiting rehabilitation robots are able to provide systematic and prolonged
treatment and training sessions, there are drawbacks associated with their designs. In terms of
actuators and mechanical designs, artificial pneumatic muscle represents a good choice for wearable
robots because of its relatively low weight, high efficiency, and intrinsic safety. However, low control
bandwidth and complex algorithms are main challenges that hinder its applications. Trajectory
tracking control is the basis and is applied in almost all available rehabilitation robotic trainers.
However, this control strategy guides the patient’s lower limb on a predefined trajectory without
taking into account patient’s movement intention, thus reducing user’s active participation and
motivation. Impedance control based on force feedback allows the patient to deviate from the
reference trajectory according to the dynamic relationship between position and interaction force,
and thus is more suitable for patients. However, as the impaired limb should be treated with
different impedance values and robot compliance, how to determine the impedance parameters is
still an open problem. In this situation, robotic training with adaptive impedance model and
assist-as-needed control concept is supposed to be the most appropriate method, as the amount of
robot assistance can be adjusted to suit patient’s recovery conditions and training progresses.

As stated previously, the implementation of adaptive control algorithm ought to its ability to
generate different training modes adaptable to patients with different recovery conditions. Thus,
one important factor is to evaluate and quantify the patient’s movement ability, muscle activity or
training progress. To the authors’ best knowledge, the patient’s muscle activity and recovery status
cannot be monitored online in most existing lower limb rehabilitation robots [98]. Most current
approaches used kinematic parameters, such as the interaction force, joint angle/trajectory tracking



errors, to determine the patient’s movement ability, but these data are hard to accurately reflect
patient’s actual ability [83, 99]. It is expected in the future that the bio-signals (e.g. EMG) must be
introduced in the whole lifecycle of robot control, so that the patient’s movement intention can be
perceived and the muscle activity level can be reflected. However, the major difficulty of the
EMG-based evaluation and control could come from the following aspects. Firstly, the EMG signals
quality affects the muscle activity modelling. This model will possibly include skin noises of subject’s
body segments, which are unique to individual subjects, and the EMG magnitudes could change as
the training progresses. Secondly, it is not easy to build a universal muscular force prediction model
that is suitable for all patients, and it is also hard to evaluate a specific lower limb joint muscle during
robot-assisted movement. Moreover, the muscle activity and required robot assistance is changing
all the time, so real-time computation is needed to ensure the controller’s dynamic performance,
which makes the EMG based evaluation even more challenging.

In addition, there are only limited studies of the interactions between robots, patients and
physiotherapists. The advanced human-robot interfaces for patients and physiotherapists have not
been fully considered in current rehabilitation devices. One study is conducted by Akdogan et al.
who developed a lower limb robot to perform exercises and learn specific exercise motions from the
physiotherapist through a human—machine interface [100]. Experiments showed that the robot
could perform necessary exercise in accordance with the manual trial by physiotherapist. However,
whether the mechanical interfaces can improve the patient’s clinical outcomes and comfort the
body structures with low compliance according to therapist’s experience is still unclear. Study [71]
has developed a bidirectional human-machine interface by using EMG signals and an extended
physiological proprioception (EPP) feedback system. However, the sensitivity of the EMG electrodes,
the accuracy of the model between the motion intention and the EMG signals are still challenging
problems. Although EMG recordings make it possible to predict human motion intention precisely in
advance, some errors may exist due to the rapidly changed direction of the muscle extension of
human limb during exercise. Hence, angle and force information which can provide mechanical data
of the robotic system must be considered as the compensation signals. On the other hand, many
rehabilitation robots lack effective patient evaluation system. As the objectivity of traditional clinical
scoring scales is not guaranteed, the question of most effective rehabilitation assessment strategy is
still open. Although the introduction of bio-signals makes the objective evaluation possible, how to
provide reliable assessment metrics is an unsolved problem.

Future research in the area of robot-assisted lower limb rehabilitation can be summarized as
follows. Firstly, the robot-assisted rehabilitation needs to comply with neurophysiological therapy
principles. The ability to deliver a variety of control modes that match patient's different recovery
stages is one of the prerequisites for robot-assisted rehabilitation. Secondly, in order to get a clear
perspective of patient’s movement ability and recovery conditions, new assessment strategies
should be developed to verify the effectiveness of robot-assisted rehabilitation [101]. Patient’s
movement ability can be evaluated by robot recording data, while the muscle activity status should
be determined from bio-signals by statistically analysing. Thirdly, patient's active participation plays
an essential effect on the rehabilitation outcomes. It is critical to adjust the robot assistance force
and encourage patient’s maximum voluntary efforts during robot-assisted therapy. Further study on
the combination of robot control with bio-signals (e.g. EMG) is required to assess patient’s muscle
activity levels and recovery conditions, and to modify the robot impedance to provide adjustable
assistance force for particular patients. To this end, research on novel adaptive control techniques to



implement efficient assist-as-needed strategies is also essential in the future. Last but not least, the
evidences in effectiveness provided by robot-assisted rehabilitation are less than expected. It is still
early to draw a conclusion that all robot-assisted rehabilitation is superior to the conventional
manual therapy, though the robot’s advantages are obvious. In the future, trials with more patient
groups should be conducted to highlight the clinical effectiveness of rehabilitation robots.
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