97 research outputs found

    Metals Challenged by Neutron and Synchrotron Radiation

    Get PDF
    Neutron and Synchrotron radiation methods have matured to become powerful techniques for the study of a vast range of materials, including metals. The characterization methods comprise the categories of diffraction, spectroscopy and imaging, which themselves can alter greatly in detail, to include hundreds of variants, problems and sample environments. In a similar way, their applications to metals and hard condensed matter materials cover disciplines spanning engineering, physics, chemistry, materials science and their derivatives such as geology, energy storage, etc. … The present book, “Metals Challenged by Neutron and Synchrotron Radiation” is a first compilation in Metals of 20 original and review works on research utilizing or designing those state-of-the-art techniques at modern facilities. The Editorial reviews the context of and identifies thematic links between these papers, grouping them into five interwoven themes, namely Sintering Techniques and Microstructure Evolution, Titanium Aluminides and Titanium Alloys Under Extreme Conditions, Metallic Glass and Disordered Crystals, In Situ and Time-Resolved Response to Mechanical Load and Shock, and Thin Films and Layers. This book represents a good cross-section of the status quo of neutron and synchrotron radiation with respect to questions in the metallurgical field, which by far is not exhaustive. Nor are the methods and other materials, which motivated me to the creation of a new sister-journal, entitled Quantum Beam Science. With this, I would like to thank all authors, reviewers and contributors behind the scene for the creation of this work, presenting to you a piece of interesting reading and reference literature

    In situ study of dynamic recrystallization and hot deformation behavior of a multiphase titanium aluminide alloy

    Get PDF
    Hot-compression tests were conducted in a high-energy synchrotron x-ray beam to study in situ and in real time microstructural changes in the bulk of a β-solidifying titanium aluminide alloy. The occupancy and spottiness of the diffraction rings have been evaluated in order to access grain growth and refinement, orientation relationships, subgrain formation, dynamic recovery, and dynamic recrystallization, as well as phase transformations. This method has been applied to an alloy consisting of two coexisting phases at high temperature and it was found that the bcc β-phase recrystallizes dynamically, much faster than the hcp α-phase, which deforms predominantly through crystallographic slip underpinned by a dynamic recovery process with only a small component of dynamic recrystallization. The two phases deform to a very large extent independently from each other. The rapid recrystallization dynamics of the β-phase combined with the easy and isotropic slip characteristics of the bcc structure explain the excellent deformation behavior of the material, while the presence of two phases effectively suppresses grain growth

    ANSTO Tour and Site Visit

    Get PDF
    On 9 September 2016, Materials Australia New South Wales members gathered at the Australian Nuclear Science and Technology Organisation (ANSTO) for a tour of some of the country\u27s most advanced, scientific infrastructure. After almost two years, this is the second time we were escorted around ANSTO\u27s Lucas Heights site

    Metals Challenged by Neutron and Synchrotron Radiation

    Get PDF
    In the past one and a half decades, neutron and synchrotron radiation techniques have come to the forefront as an excellent set of tools for the wider investigation of material structures and properties, becoming available to a large user community. This holds especially true for metals, which are a fascinating class of materials with both structural and functional applications. With respect to these application classes, metals are used to engineer bridges and automotive engines as well as to exploit magnetic and electric properties in computer storage, optics, and electronics. Both neutron sources and synchrotrons are large user facilities of quantum-beam installations [3] with the implementation of a common accelerator or nuclear reactor-based source, often serving over 50 beamlines simultaneously and even more end stations. Up to a few thousand experiments are undertaken yearly, utilizing specialized beam conditions, sample environments, and detection systems. Their variations range across spectroscopy, diffraction, small-angle scattering, and inelastic scattering for sample sizes ranging from nanometers to meters. Examples of such installations can be found in the Topical Collection Facilities of Metals\u27 sister journal Quantum Beam Science. The scope of the present Special Issue in Metals comprises articles on research case studies on individually selected systems. Fields of interest range from engineering, through materials design, to fundamental materials science, including non-exclusively, strain scanning, texture analysis, phase transformation, precipitation, microstructure reconstruction, crystal defects, atomic structures (both crystalline and amorphous), order and disorder, kinetics, time-resolved microstructure evolution, local structure correlations, phonons, deformation and transformation mechanisms, response to extreme conditions, local and integrated studies, both within the bulk and at interfaces. Regarding the breadth of the discipline, this contribution is not exhaustive by far, but stimulates important and evolving studies throughout the metals community

    Microscale Mechanical Behaviour Of Ultra-Fine-Grained Materials Processed By High-Pressure Torsion

    Get PDF
    A special networking seminar was given by Associate Professor Megumi Kawasaki from Hanyang University, South Korea. The seminar covered microscale mechanical behaviour of ultrafine- grained materials processed by high-pressure torsion, and was co-organised by the School of Mechanical, Materials and Mechatronic Engineering (MMME), University of Wollongong and Materials Australia NSW. The event was hosted on 20 September 2016 at a sponsored networking tea by MMME

    Quantum Beam Science-Applications to Probe or Influence Matter and Materials

    Get PDF
    The concept of quantum beams unifies a multitude of different kinds of radiation that can be considered as both waves and particles, according to the quantum mechanical model. Examples include light, in the form of X-rays and synchrotron radiation, as well as neutrons, electrons, positrons, muons, protons, ions, and photons. While the past century saw the discovery of these types of radiation and particles along with the investigations of their physical properties and their fundamental interaction with matter, the current century focuses extensively on their applications to characterize and understand materials in their broadest context, under all imaginable conditions. X-rays diffract to deliver crystal structures, while muons probe for the local magnetism in such crystals. Similarly, neutrons diffract and probe for magnetism, while both γ-rays and positrons allow to measure the electronic density of states; or again X-ray, neutron or electron diffraction probes for crystal defects in addition to ion beam channeling. Because of their penetration, X-rays, neutrons and muons can be used for imaging, such as radiography and tomography. At the same time, the types of quantum beams are different in which information can be obtained when investigating a particular material. Take the difference in cross-sections between neutrons and X-rays, respectively emphasizing the light or the heavy elements in a compound or alloy. While neutrons diffract from nuclei and, as elementary magnets via their spins, they allow determination of crystal and magnetic structure via crystallographic methods. Muons, on the other hand, can be embedded as interstitials into crystals, locally probing the site and its surrounding electromagnetic potential landscape. There is much interest in the dynamics of matter-how electricity and heat are transported through a crystal, related to inelastic scattering of quantum beams. Again, neutrons win overall for the investigation of phonons, while visual light scattering in the form of Raman spectroscopy is much easier to conduct and delivers complementary information

    In-situ neutron and synchrotron methods for the investigation of plastic deformation and annealing in metals

    No full text
    Following a crash course in neutron and synchrotron diffraction standards, applications are demonstrated on selected metallic systems, comprising the atomic order in titanium aluminide intermetallics at thermal and mechanical processing. High pressure torsion processed specimens show heterogeneous structure and order. Upon heating, their nanostructure evolves revealing regimes of recovery, recrystallization and grain growth, which can be exploited for engineering designated microstructures with enhanced physical and mechanical properties. Advanced analysis of two-dimensional diffractograms by synchrotron radiation allows to distinguish microstructure transformations as well as deformation mechanisms in thermo-mechanical processing. The methods are applicable to a wide range of materials and processes allowing to speed up materials development by orders of magnitude
    corecore