651 research outputs found

    Opportunistic feeding of longhorn sculpin (Myoxocephalus octodecemspinosus): Are scallop fishery discards an important food subsidy for scavengers on Georges Bank?

    Get PDF
    There has been much recent interest in the effects of fishing on habitat and non-target species, as well as in protecting certain areas of the seabed from these effects (e.g. Jennings and Kaiser, 1998; Benaka, 1999; Langton and Auster, 1999; Kaiser and de Groot, 2000). As part of an effort to determine the effectiveness of marine closed areas in promoting recovery of commercial species (e.g. haddock, Melanogrammus aegelfinus; sea scallops, Placopecten magellanicus; yellowtail flounder, Limanda ferruginea; cod, Gadus morhua), nontarget species, and habitat, a multidisciplinary research cruise was conducted by the Northeast Fisheries Science Center (NEFSC), National Marine Fisheries Service. The cruise was conducted in closed area II (CA-II) of the eastern portion of Georges Bank during 19–29 June 2000 (Fig. 1). The area has historically produced high landings of scallops but was closed in 1994 principally for groundfish recovery (Fogarty and Murawski, 1998). The southern portion of the area was reopened to scallop fishing from 15 June to 12 November 1999, and again from 15 June to 15 August 2000. While conducting our planned sampling, we observed scallop viscera (the noncalcareous remains from scallops that have been shucked by commercial fishermen at sea) in the stomachs of several fish species at some of these locations, namely little skate (Raja erinacea), winter skate (R. ocellata), red hake (Urophycis chuss), and longhorn sculpin (Myoxocephalus octodecemspinosus). We examined the stomach contents of a known scavenger, the longhorn sculpin, to evaluate and document the extent of this phenomenon

    Using productivity and susceptibility indices to assess the vulnerability of United States fish stocks to overfishing

    Get PDF
    Assessing the vulnerability of stocks to fishing practices in U.S. federal waters was recently highlighted by the National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration, as an important factor to consider when 1) identifying stocks that should be managed and protected under a fishery management plan; 2) grouping data-poor stocks into relevant management complexes; and 3) developing precautionary harvest control rules. To assist the regional fishery management councils in determining vulnerability, NMFS elected to use a modified version of a productivity and susceptibility analysis (PSA) because it can be based on qualitative data, has a history of use in other fisheries, and is recommended by several organizations as a reasonable approach for evaluating risk. A number of productivity and susceptibility attributes for a stock are used in a PSA and from these attributes, index scores and measures of uncertainty are computed and graphically displayed. To demonstrate the utility of the resulting vulnerability evaluation, we evaluated six U.S. fisheries targeting 162 stocks that exhibited varying degrees of productivity and susceptibility, and for which data quality varied. Overall, the PSA was capable of differentiating the vulnerability of stocks along the gradient of susceptibility and productivity indices, although fixed thresholds separating low-, moderate-, and highly vulnerable species were not observed. The PSA can be used as a flexible tool that can incorporate regional-specific information on fishery and management activity

    The Role of Cod in the Ecosystem

    Get PDF
    Abstract only

    Economic and Ecosystem Effects of Fishing on the Northeast US Shelf

    Get PDF
    Modeling tools that can demonstrate possible consequences of strategies designed to operationalize ecosystem-based fisheries management (EBFM) should be able to address tradeoffs over a wide suite of considerations representing the scope of marine management objectives. Coupled ecological-economic modeling, where models for ecological and economic subsystems are linked through their inputs and outputs, allows for quantification of such tradeoffs. Here, we link the harvest output from fishery management scenarios implemented in an end-to-end ecosystem model (Atlantis) to an input–output regional economic model for the Northeast United States to calculate changes in socio-economic indicators, including the consequences of management action for regional sales, wages, and employment. We implement three simple scenarios (maintain, decrease, or increase current fishing effort), and compare model-projected values for systematic and sector-specific indicators. Systematic indicators revealed different ecological and economic outcomes, with large ecological responses and clear tradeoffs among the catch and biomass of species groups. Economic indicators for the region responded similarly to fishery yield; however, changes in total sales did not match those in landed catch. Under increased fishing effort, a lower proportional increase in sales relative to total landed catch arose due to increased yield from lower value species groups. Average fisheries income changed little among scenarios, but was highest when effort was maintained at current levels, likely a reflection of fleet and catch stability. Our results serve to demonstrate that consequences of management may be felt disproportionately among species through the region and across different fisheries sectors. With our coupled modeling approach of passing Atlantis ecosystem model outputs to an input–output economic model, we were able to assess effects of fisheries management across a broader suite of indicators that have relevance for policymakers across multiple objectives

    A cross-ecosystem comparison of temporal variability in recruitment of functionally analogous fish stocks

    Get PDF
    As part of the international MENU collaboration, variability in temporal patterns of recruitment and spawning stock were compared among functionally analogous species from four marine ecosystems including the Gulf of Maine/Georges Bank, the Norwegian/Barents Seas, the eastern Bering Sea and the Gulf of Alaska. Variability was characterized by calculating coefficients of variation for each time series and by representing the time series as anomalies. Patterns of synchrony and asynchrony in recruitment and spawning stock indices were examined among and between ecosystems and related to observed patterns in biophysical properties (e.g. local trophodynamics, local hydrography and large scale climate indices) using a wide range of time series analyses, autocorrelation corrections, autoregressive processes, and multivariate cross-correlation analyses. Of all the commonalities, the relatively similar cross-ecosystem and within-species magnitude of variation was most notable. Of all the differences, the timing of high or low recruitment years across both species and ecosystems was most notable. However, many of the peaks in these indices of recruitment were synchronous across ecosystems for functionally analogous species. Yet the relationships (or lack thereof) between recruitment anomalies and key biophysical properties demonstrated that no one factor consistently caused large recruitment events. Our observations also suggested that there was no routine and common set of factors that influences recruitment; often multiple factors were of similar relative prominence. This work demonstrates that commonalities and synchronies in recruitment fluctuations can be found across geographically very distant ecosystems, but biophysical causes of the fluctuations are difficult to partition. Keywords: Ecosystem, recruitment, trophodynamics, variation

    A comparison of community and trophic structure in five marine ecosystems based on energy budgets and system metrics

    Get PDF
    As part of the international MENU collaboration, energy budget models for five marine ecosystems were compared to identify differences and similarities in trophic and community characteristics across ecosystems. We examined the Gulf of Maine and Georges Bank in the Northwest Atlantic Ocean, the combined Norwegian/Barents Seas in the Northeast Atlantic Ocean, and the eastern Bering Sea and the Gulf of Alaska in the Northeast Pacific Ocean. Comparable energy budgets were constructed for each ecosystem by aggregating information for similar species groups into consistent functional groups across all five ecosystems. Several ecosystem metrics (including functional group production, consumption, and biomass ratios, ABC curves, cumulative biomass, food web macrodescriptors, and network metrics) were examined across the ecosystems. The comparative approach clearly identified data gaps for each ecosystem, an important outcome of this work. Commonalities across the ecosystems included overall high primary production and energy flow at low trophic levels, high production and consumption by carnivorous zooplankton, and similar proportions of apex predator to lower trophic level biomass. Major differences included distinct biomass ratios of pelagic to demersal fish, ranging from highest in the Norwegian/Barents ecosystem to lowest in the Alaskan systems, and notable gradients in primary production per unit area, highest in the Alaskan and Georges Bank/Gulf of Maine ecosystems, and lowest in the Norwegian ecosystems. While comparing a disparate group of organisms across a wide range of marine ecosystems is challenging, this work demonstrates that standardized metrics both elucidate properties common to marine ecosystems and identify key distinctions for fishery management

    International perceptions of an integrated, multi-sectoral, ecosystem approach to management:Editor’s Choice

    Get PDF
    Abstract The Ecosystem Approach to Management (EAM) has emerged over the past decades, largely to promote biodiversity conservation, and more recently sectoral tradeoffs in the management of marine ecosystems. To ascertain the state of practice of EAM operationalization, a workshop was held, which included a pre-workshop online survey. The survey gauged international participants’ perspectives regarding capacity, knowledge, and application of EAM. When asked about the subject, most survey respondents had a general understanding of EAM, and provided a clear definition. Major perceived challenges to EAM objectives by those surveyed included limited knowledge, conflicting interests, insufficient communication, and limited organizational legal frameworks or governance structures. Of those directly involved in an ecosystem approach, the majority responded that processes were in place or developed for application of integrated knowledge toward assessing key issues within their respective sectors (i.e. fisheries, conservation, energy), and that capacity was generally high. Our results show that most respondents, irrespective of sector or geography, see value in considering an integrated, broader ecosystem approach as they manage their sector. Although many participants were from the North Atlantic region, our results suggest that much of the international community is converging toward continued understanding of broad-scale, integrated approaches to marine resource management.</jats:p
    corecore