44 research outputs found

    Transmission loss patterns from acoustic harassment and deterrent devices do not always follow geometrical spreading predictions

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Marine Mammal Science 25 (2009): 53-67, doi:10.1111/j.1748-7692.2008.00243.x.Acoustic harassment and deterrent devices have become increasingly popular mitigation tools for negotiating the impacts of marine mammals on fisheries. The rationale for their variable effectiveness remains unexplained but high variability in the surrounding acoustic field may be relevant. In the present study, the sound fields of one acoustic harassment device and three acoustic deterrent devices were measured at three study sites along the Scandinavian coast. Superimposed onto an overall trend of decreasing sound exposure levels with increasing range were large local variations in sound level for all sources in each of the environments. This variability was likely caused by source directionality, inter-ping source level variation and multi-path interference. Rapid and unpredictable variations in the sound level as a function of range deviated from expectations derived from spherical and cylindrical spreading models and conflicted with the classic concept of concentric zones of increasing disturbance with decreasing range. Under such conditions, animals may encounter difficulties when trying to determine the direction to and location of a sound source, which may complicate or jeopardize avoidance responses.The project was funded by the Swedish Fishermen Association, the Swedish Board of Fisheries, Aage V. Jensen Foundations, Danish Forest and Nature Agency, The Nordic Research Council and the Carlsberg Foundation. Additional logistical support was furnished by the Oticon Foundation and Reson A/S. A.D. Shapiro received financial support from the National Defense Science and Engineering Graduate Fellowship and the WHOI Academic Programs Office. 35

    Estimating the abundance of the critically endangered Baltic Proper harbour porpoise (Phocoena phocoena) population using passive acoustic monitoring

    Get PDF
    The SAMBAH project was funded by the LIFE+ program of the European Commission (LIFE08 NAT/S/000261) and co-funded by Bundesamt für Naturschutz, Germany (SAMBAH II 5 Vw/52602/2011-Mar 36032/66); Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit, Germany (COSAMM FKZ 0325238); Carlsbergfondet, Denmark (CF16-0861); European Association of Zoos and Aquaria, The Netherlands; Główny Inpektorat Ochrony Środowiska, Poland; Havs-och Vattenmyndigheten, Sweden; Instytut Meteorologii i Gospodarki Wodnej - Państwowy Instytut Badawczy, Poland; Japanese Science and Technology Agency-CREST, Japan (7620-7); Kolmårdens Djurpark, Sweden; Maailman Luonnon Säätiö (WWF) Suomen Rahasto, Finland; Miljøministeriet, Denmark; Miljø- og Fødevareministeriet, Denmark (SN 343/SN-0008); Narodowy Fundusz Ochrony Środowiska i Gospodarki Wodnej, Poland (561/2009/Wn-50/OP/RE-LF/D); Naturvårdsverket, Sweden; SNAK Ph.D. School, Aarhus University, Denmark (91147/365); Tampereen Särkänniemi Ltd., Finland; Turun ammattikorkeakoulu Oy, Finland; Uniwersytet Gdański, Poland; Wojewódzki Fundusz Ochrony Środowiska i Gospodarki Wodnej w Gdańsku, Poland; and Ympäristöministeriö, Finland.Knowing the abundance of a population is a crucial component to assess its conservation status and develop effective conservation plans. For most cetaceans, abundance estimation is difficult given their cryptic and mobile nature, especially when the population is small and has a transnational distribution. In the Baltic Sea, the number of harbour porpoises (Phocoena phocoena) has collapsed since the mid-20th century and the Baltic Proper harbour porpoise is listed as Critically Endangered by the IUCN and HELCOM; however, its abundance remains unknown. Here, one of the largest ever passive acoustic monitoring studies was carried out by eight Baltic Sea nations to estimate the abundance of the Baltic Proper harbour porpoise for the first time. By logging porpoise echolocation signals at 298 stations during May 2011-April 2013, calibrating the loggers' spatial detection performance at sea, and measuring the click rate of tagged individuals, we estimated an abundance of 71-1105 individuals (95% CI, point estimate 491) during May-October within the population's proposed management border. The small abundance estimate strongly supports that the Baltic Proper harbour porpoise is facing an extremely high risk of extinction, and highlights the need for immediate and efficient conservation actions through international cooperation. It also provides a starting point in monitoring the trend of the population abundance to evaluate the effectiveness of management measures and determine its interactions with the larger neighboring Belt Sea population. Further, we offer evidence that design-based passive acoustic monitoring can generate reliable estimates of the abundance of rare and cryptic animal populations across large spatial scales.Publisher PDFPeer reviewe

    Clicking in a killer whale habitat : narrow-band, high-frequency biosonar clicks of harbour porpoise (Phocoena phocoena) and Dall's porpoise (Phocoenoides dalli)

    Get PDF
    This study was funded by the Aarhus University Research Foundation, the Danish Ministry of Environment (Jagttegnsmidlerne) and by frame grants to PTM from the National Danish Science Research Council. RW was supported by a Marie Curie International Incoming Fellowship within the 7th European Community Framework Programme, and FHJ by a postdoctoral fellowship from the Danish Council for Independent Research | Natural Sciences.Odontocetes produce a range of different echolocation clicks but four groups in different families have converged on producing the same stereotyped narrow band high frequency (NBHF) click. In microchiropteran bats, sympatric species have evolved the use of different acoustic niches and subtly different echolocation signals to avoid competition among species. In this study, we examined whether similar adaptations are at play among sympatric porpoise species that use NBHF echolocation clicks. We used a six-element hydrophone array to record harbour and Dall's porpoises in British Columbia (BC), Canada, and harbour porpoises in Denmark. The click source properties of all porpoise groups were remarkably similar and had an average directivity index of 25 dB. Yet there was a small, but consistent and significant 4 kHz difference in centroid frequency between sympatric Dall's (137 +/- 3 kHz) and Canadian harbour porpoises (141 +/- 2 kHz). Danish harbour porpoise clicks (136 +/- 3 kHz) were more similar to Dall's porpoise than to their conspecifics in Canada. We suggest that the spectral differences in echolocation clicks between the sympatric porpoises are consistent with evolution of a prezygotic isolating barrier (i.e., character displacement) to avoid hybridization of sympatric species. In practical terms, these spectral differences have immediate application to passive acoustic monitoring.Publisher PDFPeer reviewe

    Carmela Pérez-Salazar, Cristina Tabernero y Jesús M. Usunáriz (eds.) Los poderes de la palabra. El improperio en la cultura hispánica del Siglo de Oro

    Get PDF
    Este atractivo libro reúne una selección de las ponencias presentadas en el Congreso Internacional “Improperios áureos. El insulto en la cultura hispánica del Siglo de Oro”, celebrado en la ciudad de Corella, España, los días 14 y 15 de abril de 2011, actividad que reunió 21 especialistas de las letras y de la cultura española de los siglos XVI y XVII, para presentar distintos aspectos del proyecto multidisciplinar desarrollado por el Grupo de Investigación del Siglo de Oro, GRISO, de la Univ..

    Grey seal Halichoerus grypus recolonisation of the southern Baltic Sea, Danish Straits and Kattegat

    No full text
    The grey seal became locally extinct in the southern Baltic Sea, Danish Straits and Kattegat in the early 1900s after prolonged culling campaigns. Here, we combine national monitoring and anecdotal data from Denmark, Sweden, Germany and Poland to report on the grey seal's recolonisation of those areas and the initial reestablishment of breeding colonies. Grey seal occurrence has steadily increased since year 2003 as evidenced by the coordinated Baltic Sea moult censuses. At the first census in 2003, there were 146 grey seals along the southern Baltic coasts of Sweden and Denmark, ca 1% of the total Baltic Sea population count. Since 2015, this has increased to 2000–2600 grey seals, or ca 7% of the total population count. Since the local extinction, there have been sporadic breeding events in the 1940s on sea ice around Bornholm and in the 1980s and 1990s on haul-outs in Kattegat. In 2003, the first two pups in the southern Baltic Sea were recorded at Rødsand, Denmark. This is to date the only site in the southern Baltic Sea with regular annual pupping since the recolonisation. Since 2000, there have also been sporadic breeding events in Danish Kattegat, southern Sweden, Poland and Germany. At Rødsand, there have been at least 3–10 pups recorded every year since initiation of monitoring in 2011, with an increasing tendency until 2017 with 10 pups counted, which subsequently decreased to 5–6 pups annually in 2018–2020. Compared to recolonising events in the Atlantic, the numbers of pups are low. This may be caused by differences in population dynamics, recolonisation distances, habitat and mortality and effects of rehabilitation programmes. It is likely that the breeding distribution will spread throughout the southern Baltic, Danish Straits and Kattegat if appropriate protection measures of seals and haul-outs are installed

    Estimating the abundance of the critically endangered Baltic Proper harbour porpoise (Phocoena phocoena) population using passive acoustic monitoring

    No full text
    Knowing the abundance of a population is a crucial component to assess its conservation status and develop effective conservation plans. For most cetaceans, abundance estimation is difficult given their cryptic and mobile nature, especially when the population is small and has a transnational distribution. In the Baltic Sea, the number of harbour porpoises (Phocoena phocoena) has collapsed since the mid-20th century and the Baltic Proper harbour porpoise is listed as Critically Endangered by the IUCN and HELCOM; however, its abundance remains unknown. Here, one of the largest ever passive acoustic monitoring studies was carried out by eight Baltic Sea nations to estimate the abundance of the Baltic Proper harbour porpoise for the first time. By logging porpoise echolocation signals at 298 stations during May 2011-April 2013, calibrating the loggers' spatial detection performance at sea, and measuring the click rate of tagged individuals, we estimated an abundance of 71-1105 individuals (95% CI, point estimate 491) during May-October within the population's proposed management border. The small abundance estimate strongly supports that the Baltic Proper harbour porpoise is facing an extremely high risk of extinction, and highlights the need for immediate and efficient conservation actions through international cooperation. It also provides a starting point in monitoring the trend of the population abundance to evaluate the effectiveness of management measures and determine its interactions with the larger neighboring Belt Sea population. Further, we offer evidence that design-based passive acoustic monitoring can generate reliable estimates of the abundance of rare and cryptic animal populations across large spatial scales.publishe

    Discriminant analysis.

    No full text
    <p>Centroid frequency, bandwidth (rms) and duration were used to separate BC harbour porpoises, Danish harbour porpoises and Dall’s porpoises. All parameters were significantly different across populations. The three species could be separated 84% correctly.</p
    corecore