3,641 research outputs found
Resonance- and Chaos-Assisted Tunneling
We consider dynamical tunneling between two symmetry-related regular islands
that are separated in phase space by a chaotic sea. Such tunneling processes
are dominantly governed by nonlinear resonances, which induce a coupling
mechanism between ``regular'' quantum states within and ``chaotic'' states
outside the islands. By means of a random matrix ansatz for the chaotic part of
the Hamiltonian, one can show that the corresponding coupling matrix element
directly determines the level splitting between the symmetric and the
antisymmetric eigenstates of the pair of islands. We show in detail how this
matrix element can be expressed in terms of elementary classical quantities
that are associated with the resonance. The validity of this theory is
demonstrated with the kicked Harper model.Comment: 25 pages, 5 figure
Spintronic properties of one-dimensional electron gas in graphene armchair ribbons
We have investigated, using effective mass approach (EMA), magnetic
properties of a one-dimensional electron gas in graphene armchair ribbons when
the electrons of occupy only the lowest conduction subband. We find that
magnetic properties of the one-dimensional electron gas may depend sensitively
on the width of the ribbon. For ribbon widths , a critical point
separates ferromagnetic and paramagnetic states while for
paramagnetic state is stable ( is an integer and is the length of
the unit cell). These width-dependent properties are a consequence of
eigenstates that have a subtle width-dependent mixture of and
states, and can be understood by examining the wavefunction
overlap that appears in the expression for the many-body exchange self-energy.
Ferromagnetic and paramagnetic states may be used for spintronic purposes.Comment: 5 pages, 6 figure
High pressure X-ray preionized TEMA-CO2 laser
The construction of a high-pressure (up to 20 atm) transversely excited CO2 laser using transverse X-ray preionization is described. High pressure operation was found to be greatly improved in comparison to UV-preionized systems. Homogeneous discharges have been achieved in the pressure range 5–20 atm, yielding a specific laser output in the order of 35 J/l
Characterization study of GaN-based epitaxial layer and light-emitting diode on nature-patterned sapphire substrate
[[abstract]]Chemical wet etching on c-plane sapphire wafers by three etching solutions (H3PO4, H2SO4, and H3PO4/H2SO4 mixing solution) was studied. Among these etching agents, the mixing H3PO4/H2SO4 solution has the fastest etching rate (1.5 μm/min). Interestingly, we found that H2SO4 does not etch the c-plane sapphire wafer in thickness; instead, a facet pyramidal pattern is formed on the c-plane sapphire wafer. GaN light-emitting diode (LED) epitaxial structure was grown on the sapphire wafer with the pyramidal pattern and the standard flat sapphire wafer. X-ray diffraction and photoluminescence measurement show that the pyramidal pattern on the sapphire wafer improved crystalline quality but augmented the compressive stress level in the GaN LED epilayer. The horizontal LED chips fabricated on the pyramidal-patterned sapphire wafer have a larger light output than the horizontal LED chips fabricated on the standard flat sapphire wafer by 20%.[[notice]]補正完畢[[incitationindex]]SCI[[booktype]]紙本[[booktype]]電子
Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion towards all normal dispersion
Soliton operation and soliton wavelength tuning of erbium-doped fiber lasers
mode locked with atomic layer graphene was experimentally investigated under
various cavity dispersion conditions. It was shown that not only wide range
soliton wavelength tuning but also soltion pulse width variation could be
obtained in the fiber lasers. Our results show that the graphene mode locked
erbium-doped fiber lasers provide a compact, user friendly and low cost
wavelength tunable ultrahsort pulse source
BPS R-balls in N=4 SYM on R X S^3, Quantum Hall Analogy and AdS/CFT Holography
In this paper, we propose a new approach to study the BPS dynamics in N=4
supersymmetric U(N) Yang-Mills theory on R X S^3, in order to better understand
the emergence of gravity in the gauge theory. Our approach is based on
supersymmetric, space-filling Q-balls with R-charge, which we call R-balls. The
usual collective coordinate method for non-topological scalar solitons is
applied to quantize the half and quarter BPS R-balls. In each case, a different
quantization method is also applied to confirm the results from the collective
coordinate quantization. For finite N, the half BPS R-balls with a U(1)
R-charge have a moduli space which, upon quantization, results in the states of
a quantum Hall droplet with filling factor one. These states are known to
correspond to the ``sources'' in the Lin-Lunin-Maldacena geometries in IIB
supergravity. For large N, we find a new class of quarter BPS R-balls with a
non-commutativity parameter. Quantization on the moduli space of such R-balls
gives rise to a non-commutative Chern-Simons matrix mechanics, which is known
to describe a fractional quantum Hall system. In view of AdS/CFT holography,
this demonstrates a profound connection of emergent quantum gravity with
non-commutative geometry, of which the quantum Hall effect is a special case.Comment: 42 pages, 2 figures; v3: a new paragraph on counting unbroken susy of
NC R-balls and references adde
Measurement of the Intrinsic Radiopurity of Cs-137/U-235/U-238/Th-232 in CsI(Tl) Crystal Scintillators
The inorganic crystal scintillator CsI(Tl) has been used for low energy
neutrino and Dark Matter experiments, where the intrinsic radiopurity is an
issue of major importance. Low-background data were taken with a CsI(Tl)
crystal array at the Kuo-Sheng Reactor Neutrino Laboratory. The pulse shape
discrimination capabilities of the crystal, as well as the temporal and spatial
correlations of the events, provide powerful means of measuring the intrinsic
radiopurity of Cs-137 as well as the U-235, U-238 and Th-232 series. The event
selection algorithms are described, with which the decay half-lives of Po-218,
Po-214, Rn-220, Po-216 and Po-212 were derived. The measurements of the
contamination levels, their concentration gradients with the crystal growth
axis, and the uniformity among different crystal samples, are reported. The
radiopurity in the U-238 and Th-232 series are comparable to those of the best
reported in other crystal scintillators. Significant improvements in
measurement sensitivities were achieved, similar to those from dedicated
massive liquid scintillator detector. This analysis also provides in situ
measurements of the detector performance parameters, such as spatial
resolution, quenching factors, and data acquisition dead time.Comment: 28 pages, 12 figure
Studies of Prototype CsI(Tl) Crystal Scintillators for Low-Energy Neutrino Experiments
Crystal scintillators provide potential merits for the pursuit of low-energy
low-background experiments. A CsI(Tl) scintillating crystal detector is being
constructed to study low-energy neutrino physics at a nuclear reactor, while
projects are underway to adopt this technique for dark matter searches. The
choice of the geometrical parameters of the crystal modules, as well as the
optimization of the read-out scheme, are the results of an R&D program.
Crystals with 40 cm in length were developed. The detector requirements and the
achieved performance of the prototypes are presented. Future prospects for this
technique are discussed.Comment: 32 pages, 14 figure
Growth of (110) Diamond using pure Dicarbon
We use a density-functional based tight-binding method to study diamond
growth steps by depositing dicarbon species onto a hydrogen-free diamond (110)
surface. Subsequent C_2 molecules are deposited on an initially clean surface,
in the vicinity of a growing adsorbate cluster, and finally, near vacancies
just before completion of a full new monolayer. The preferred growth stages
arise from C_2n clusters in near ideal lattice positions forming zigzag chains
running along the [-110] direction parallel to the surface. The adsorption
energies are consistently exothermic by 8--10 eV per C_2, depending on the size
of the cluster. The deposition barriers for these processes are in the range of
0.0--0.6 eV. For deposition sites above C_2n clusters the adsorption energies
are smaller by 3 eV, but diffusion to more stable positions is feasible. We
also perform simulations of the diffusion of C_2 molecules on the surface in
the vicinity of existing adsorbate clusters using an augmented Lagrangian
penalty method. We find migration barriers in excess of 3 eV on the clean
surface, and 0.6--1.0 eV on top of graphene-like adsorbates. The barrier
heights and pathways indicate that the growth from gaseous dicarbons proceeds
either by direct adsorption onto clean sites or after migration on top of the
existing C_2n chains.Comment: 8 Pages, 7 figure
Radiative Corrections to One-Photon Decays of Hydrogenic Ions
Radiative corrections to the decay rate of n=2 states of hydrogenic ions are
calculated. The transitions considered are the M1 decay of the 2s state to the
ground state and the E1(M2) decays of the and states to
the ground state. The radiative corrections start in order , but the method used sums all orders of . The leading
correction for the E1 decays is calculated and compared
with the exact result. The extension of the calculational method to parity
nonconserving transitions in neutral atoms is discussed.Comment: 22 pages, 2 figure
- …
