3,641 research outputs found

    Resonance- and Chaos-Assisted Tunneling

    Full text link
    We consider dynamical tunneling between two symmetry-related regular islands that are separated in phase space by a chaotic sea. Such tunneling processes are dominantly governed by nonlinear resonances, which induce a coupling mechanism between ``regular'' quantum states within and ``chaotic'' states outside the islands. By means of a random matrix ansatz for the chaotic part of the Hamiltonian, one can show that the corresponding coupling matrix element directly determines the level splitting between the symmetric and the antisymmetric eigenstates of the pair of islands. We show in detail how this matrix element can be expressed in terms of elementary classical quantities that are associated with the resonance. The validity of this theory is demonstrated with the kicked Harper model.Comment: 25 pages, 5 figure

    Spintronic properties of one-dimensional electron gas in graphene armchair ribbons

    Full text link
    We have investigated, using effective mass approach (EMA), magnetic properties of a one-dimensional electron gas in graphene armchair ribbons when the electrons of occupy only the lowest conduction subband. We find that magnetic properties of the one-dimensional electron gas may depend sensitively on the width of the ribbon. For ribbon widths Lx=3Ma0L_x=3Ma_0, a critical point separates ferromagnetic and paramagnetic states while for Lx=(3M+1)a0L_x=(3M+1)a_0 paramagnetic state is stable (MM is an integer and a0a_{0} is the length of the unit cell). These width-dependent properties are a consequence of eigenstates that have a subtle width-dependent mixture of K\mathbf{K} and K\mathbf{K'} states, and can be understood by examining the wavefunction overlap that appears in the expression for the many-body exchange self-energy. Ferromagnetic and paramagnetic states may be used for spintronic purposes.Comment: 5 pages, 6 figure

    High pressure X-ray preionized TEMA-CO2 laser

    Get PDF
    The construction of a high-pressure (up to 20 atm) transversely excited CO2 laser using transverse X-ray preionization is described. High pressure operation was found to be greatly improved in comparison to UV-preionized systems. Homogeneous discharges have been achieved in the pressure range 5–20 atm, yielding a specific laser output in the order of 35 J/l

    Characterization study of GaN-based epitaxial layer and light-emitting diode on nature-patterned sapphire substrate

    Get PDF
    [[abstract]]Chemical wet etching on c-plane sapphire wafers by three etching solutions (H3PO4, H2SO4, and H3PO4/H2SO4 mixing solution) was studied. Among these etching agents, the mixing H3PO4/H2SO4 solution has the fastest etching rate (1.5 μm/min). Interestingly, we found that H2SO4 does not etch the c-plane sapphire wafer in thickness; instead, a facet pyramidal pattern is formed on the c-plane sapphire wafer. GaN light-emitting diode (LED) epitaxial structure was grown on the sapphire wafer with the pyramidal pattern and the standard flat sapphire wafer. X-ray diffraction and photoluminescence measurement show that the pyramidal pattern on the sapphire wafer improved crystalline quality but augmented the compressive stress level in the GaN LED epilayer. The horizontal LED chips fabricated on the pyramidal-patterned sapphire wafer have a larger light output than the horizontal LED chips fabricated on the standard flat sapphire wafer by 20%.[[notice]]補正完畢[[incitationindex]]SCI[[booktype]]紙本[[booktype]]電子

    Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion towards all normal dispersion

    Full text link
    Soliton operation and soliton wavelength tuning of erbium-doped fiber lasers mode locked with atomic layer graphene was experimentally investigated under various cavity dispersion conditions. It was shown that not only wide range soliton wavelength tuning but also soltion pulse width variation could be obtained in the fiber lasers. Our results show that the graphene mode locked erbium-doped fiber lasers provide a compact, user friendly and low cost wavelength tunable ultrahsort pulse source

    BPS R-balls in N=4 SYM on R X S^3, Quantum Hall Analogy and AdS/CFT Holography

    Get PDF
    In this paper, we propose a new approach to study the BPS dynamics in N=4 supersymmetric U(N) Yang-Mills theory on R X S^3, in order to better understand the emergence of gravity in the gauge theory. Our approach is based on supersymmetric, space-filling Q-balls with R-charge, which we call R-balls. The usual collective coordinate method for non-topological scalar solitons is applied to quantize the half and quarter BPS R-balls. In each case, a different quantization method is also applied to confirm the results from the collective coordinate quantization. For finite N, the half BPS R-balls with a U(1) R-charge have a moduli space which, upon quantization, results in the states of a quantum Hall droplet with filling factor one. These states are known to correspond to the ``sources'' in the Lin-Lunin-Maldacena geometries in IIB supergravity. For large N, we find a new class of quarter BPS R-balls with a non-commutativity parameter. Quantization on the moduli space of such R-balls gives rise to a non-commutative Chern-Simons matrix mechanics, which is known to describe a fractional quantum Hall system. In view of AdS/CFT holography, this demonstrates a profound connection of emergent quantum gravity with non-commutative geometry, of which the quantum Hall effect is a special case.Comment: 42 pages, 2 figures; v3: a new paragraph on counting unbroken susy of NC R-balls and references adde

    Measurement of the Intrinsic Radiopurity of Cs-137/U-235/U-238/Th-232 in CsI(Tl) Crystal Scintillators

    Full text link
    The inorganic crystal scintillator CsI(Tl) has been used for low energy neutrino and Dark Matter experiments, where the intrinsic radiopurity is an issue of major importance. Low-background data were taken with a CsI(Tl) crystal array at the Kuo-Sheng Reactor Neutrino Laboratory. The pulse shape discrimination capabilities of the crystal, as well as the temporal and spatial correlations of the events, provide powerful means of measuring the intrinsic radiopurity of Cs-137 as well as the U-235, U-238 and Th-232 series. The event selection algorithms are described, with which the decay half-lives of Po-218, Po-214, Rn-220, Po-216 and Po-212 were derived. The measurements of the contamination levels, their concentration gradients with the crystal growth axis, and the uniformity among different crystal samples, are reported. The radiopurity in the U-238 and Th-232 series are comparable to those of the best reported in other crystal scintillators. Significant improvements in measurement sensitivities were achieved, similar to those from dedicated massive liquid scintillator detector. This analysis also provides in situ measurements of the detector performance parameters, such as spatial resolution, quenching factors, and data acquisition dead time.Comment: 28 pages, 12 figure

    Studies of Prototype CsI(Tl) Crystal Scintillators for Low-Energy Neutrino Experiments

    Full text link
    Crystal scintillators provide potential merits for the pursuit of low-energy low-background experiments. A CsI(Tl) scintillating crystal detector is being constructed to study low-energy neutrino physics at a nuclear reactor, while projects are underway to adopt this technique for dark matter searches. The choice of the geometrical parameters of the crystal modules, as well as the optimization of the read-out scheme, are the results of an R&D program. Crystals with 40 cm in length were developed. The detector requirements and the achieved performance of the prototypes are presented. Future prospects for this technique are discussed.Comment: 32 pages, 14 figure

    Growth of (110) Diamond using pure Dicarbon

    Get PDF
    We use a density-functional based tight-binding method to study diamond growth steps by depositing dicarbon species onto a hydrogen-free diamond (110) surface. Subsequent C_2 molecules are deposited on an initially clean surface, in the vicinity of a growing adsorbate cluster, and finally, near vacancies just before completion of a full new monolayer. The preferred growth stages arise from C_2n clusters in near ideal lattice positions forming zigzag chains running along the [-110] direction parallel to the surface. The adsorption energies are consistently exothermic by 8--10 eV per C_2, depending on the size of the cluster. The deposition barriers for these processes are in the range of 0.0--0.6 eV. For deposition sites above C_2n clusters the adsorption energies are smaller by 3 eV, but diffusion to more stable positions is feasible. We also perform simulations of the diffusion of C_2 molecules on the surface in the vicinity of existing adsorbate clusters using an augmented Lagrangian penalty method. We find migration barriers in excess of 3 eV on the clean surface, and 0.6--1.0 eV on top of graphene-like adsorbates. The barrier heights and pathways indicate that the growth from gaseous dicarbons proceeds either by direct adsorption onto clean sites or after migration on top of the existing C_2n chains.Comment: 8 Pages, 7 figure

    Radiative Corrections to One-Photon Decays of Hydrogenic Ions

    Full text link
    Radiative corrections to the decay rate of n=2 states of hydrogenic ions are calculated. The transitions considered are the M1 decay of the 2s state to the ground state and the E1(M2) decays of the 2p1/22p_{1/2} and 2p3/22p_{3/2} states to the ground state. The radiative corrections start in order α(Zα)2\alpha (Z \alpha)^2, but the method used sums all orders of ZαZ\alpha. The leading α(Zα)2\alpha (Z\alpha)^2 correction for the E1 decays is calculated and compared with the exact result. The extension of the calculational method to parity nonconserving transitions in neutral atoms is discussed.Comment: 22 pages, 2 figure
    corecore