We consider dynamical tunneling between two symmetry-related regular islands
that are separated in phase space by a chaotic sea. Such tunneling processes
are dominantly governed by nonlinear resonances, which induce a coupling
mechanism between ``regular'' quantum states within and ``chaotic'' states
outside the islands. By means of a random matrix ansatz for the chaotic part of
the Hamiltonian, one can show that the corresponding coupling matrix element
directly determines the level splitting between the symmetric and the
antisymmetric eigenstates of the pair of islands. We show in detail how this
matrix element can be expressed in terms of elementary classical quantities
that are associated with the resonance. The validity of this theory is
demonstrated with the kicked Harper model.Comment: 25 pages, 5 figure