128 research outputs found

    Non-destructive collection survey of the historical Classense Library. Part I: Paper characterisation

    Get PDF
    An innovative survey was conducted of the collections of the historical Biblioteca Classense, located in the urban area of Ravenna (Northern Italy). The survey aimed to evaluate the current conservation state of the book collections, where 297 paper-based items, including incunabula, manuscripts and books, dating from the 14th to the 20th century, were selected for analysis. This innovative survey was carried out non-destructively by assessing degradation visually and by measuring NIR spectral data followed by multivariate data analysis. Chemical and physical paper properties, important for paper characterisation and implementation of conservation strategies were determined, including paper type, pH, degree of polymerisation (DP), tensile strength, lignin, protein, and rosin content. This survey provided a significant quantitative dataset for rag paper covering a 600-year period. The analysis of DP changes over time allowed the first experimental estimation of the rate constant for historical rag paper, i.e., (4.2 ± 0.6)·10−7 year−1, which was validated with predictions based on the Collections Demography dose response function for historic paper taking into account the past climate in Ravenna. Statistical methods were employed to describe the correlations between the measured variables and different features of the books, suggesting that the degree of polymerisation can be used as a general proxy for rag paper mechanical strength

    {SoK}: {An} Analysis of Protocol Design: Avoiding Traps for Implementation and Deployment

    No full text
    Today's Internet utilizes a multitude of different protocols. While some of these protocols were first implemented and used and later documented, other were first specified and then implemented. Regardless of how protocols came to be, their definitions can contain traps that lead to insecure implementations or deployments. A classical example is insufficiently strict authentication requirements in a protocol specification. The resulting Misconfigurations, i.e., not enabling strong authentication, are common root causes for Internet security incidents. Indeed, Internet protocols have been commonly designed without security in mind which leads to a multitude of misconfiguration traps. While this is slowly changing, to strict security considerations can have a similarly bad effect. Due to complex implementations and insufficient documentation, security features may remain unused, leaving deployments vulnerable. In this paper we provide a systematization of the security traps found in common Internet protocols. By separating protocols in four classes we identify major factors that lead to common security traps. These insights together with observations about end-user centric usability and security by default are then used to derive recommendations for improving existing and designing new protocols---without such security sensitive traps for operators, implementors and users

    {SoK}: {An} Analysis of Protocol Design: Avoiding Traps for Implementation and Deployment

    No full text
    Today's Internet utilizes a multitude of different protocols. While some of these protocols were first implemented and used and later documented, other were first specified and then implemented. Regardless of how protocols came to be, their definitions can contain traps that lead to insecure implementations or deployments. A classical example is insufficiently strict authentication requirements in a protocol specification. The resulting Misconfigurations, i.e., not enabling strong authentication, are common root causes for Internet security incidents. Indeed, Internet protocols have been commonly designed without security in mind which leads to a multitude of misconfiguration traps. While this is slowly changing, to strict security considerations can have a similarly bad effect. Due to complex implementations and insufficient documentation, security features may remain unused, leaving deployments vulnerable. In this paper we provide a systematization of the security traps found in common Internet protocols. By separating protocols in four classes we identify major factors that lead to common security traps. These insights together with observations about end-user centric usability and security by default are then used to derive recommendations for improving existing and designing new protocols---without such security sensitive traps for operators, implementors and users

    The Impact of Breathing Hypoxic Gas and Oxygen on Pulmonary Hemodynamics in Patients With Pulmonary Hypertension

    Full text link
    BackgroundPure oxygen breathing (hyperoxia) may improve hemodynamics in patients with pulmonary hypertension (PH) and allows to calculate right-to-left shunt fraction (Qs/Qt), whereas breathing normobaric hypoxia may accelerate hypoxic pulmonary vasoconstriction (HPV). This study investigates how hyperoxia and hypoxia affect mean pulmonary artery pressure (mPAP) and pulmonary vascular resistance (PVR) in patients with PH and whether Qs/Qt influences the changes of mPAP and PVR.Study Design and MethodsAdults with pulmonary arterial or chronic thromboembolic PH (PAH/CTEPH) underwent repetitive hemodynamic and blood gas measurements during right heart catheterization (RHC) under normoxia [fractions of inspiratory oxygen (FiO2_{2}) 0.21], hypoxia (FiO2_{2} 0.15), and hyperoxia (FiO2_{2} 1.0) for at least 10 min.ResultsWe included 149 patients (79/70 PAH/CTEPH, 59% women, mean ± SD 60 ± 17 years). Multivariable regressions (mean change, CI) showed that hypoxia did not affect mPAP and cardiac index, but increased PVR [0.4 (0.1–0.7) WU, p = 0.021] due to decreased pulmonary artery wedge pressure [−0.54 (−0.92 to −0.162), p = 0.005]. Hyperoxia significantly decreased mPAP [−4.4 (−5.5 to −3.3) mmHg, p < 0.001] and PVR [−0.4 (−0.7 to −0.1) WU, p = 0.006] compared with normoxia. The Qs/Qt (14 ± 6%) was >10 in 75% of subjects but changes of mPAP and PVR under hyperoxia and hypoxia were independent of Qs/Qt.ConclusionAcute exposure to hypoxia did not relevantly alter pulmonary hemodynamics indicating a blunted HPV-response in PH. In contrast, hyperoxia remarkably reduced mPAP and PVR, indicating a preserved vasodilator response to oxygen and possibly supporting the oxygen therapy in patients with PH. A high proportion of patients with PH showed increased Qs/Qt, which, however, was not associated with changes in pulmonary hemodynamics in response to changes in FiO2_{2}

    Influence of Upright Versus Supine Position on Resting and Exercise Hemodynamics in Patients Assessed for Pulmonary Hypertension

    Full text link
    Background The aim of the present work was to study the influence of body position on resting and exercise pulmonary hemodynamics in patients assessed for pulmonary hypertension (PH). Methods and Results Data from 483 patients with suspected PH undergoing right heart catheterization for clinical indications (62% women, age 61±15 years, 246 precapillary PH, 48 postcapillary PH, 106 exercise PH, 83 no PH) were analyzed; 213 patients (main cohort, years 2016-2018) were examined at rest in upright (45°) and supine position, such as under upright exercise. Upright exercise hemodynamics were compared with 270 patients (historical cohort) undergoing supine exercise with the same protocol. Upright versus supine resting data revealed a lower mean pulmonary artery pressure 31±14 versus 32±13 mm Hg, pulmonary artery wedge pressure 11±4 versus 12±5 mm Hg, and cardiac index 2.9±0.7 versus 3.1±0.8 L/min per m2, and higher pulmonary vascular resistance 4.1±3.1 versus 3.9±2.8 Wood P<0.001. Exercise data upright versus supine revealed higher work rates (53±26 versus 33±22 watt), and adjusting for differences in work rate and baseline values, higher end-exercise mean pulmonary artery pressure (52±19 versus 45±16 mm Hg, P=0.001), similar pulmonary artery wedge pressure and cardiac index, higher pulmonary vascular resistance (5.4±3.7 versus 4.5±3.4 Wood units, P=0.002), and higher mean pulmonary artery pressure/cardiac output (7.9±4.7 versus 7.1±4.1 Wood units, P=0.001). Conclusions Body position significantly affects resting and exercise pulmonary hemodynamics with a higher pulmonary vascular resistance of about 10% in upright versus supine position at rest and end-exercise, and should be considered and reported when assessing PH. Keywords: body position; exercise; hemodynamic; pulmonary hypertension; right heart catheterization

    A view of Internet Traffic Shifts at {ISP} and {IXPs} during the {COVID}-19 Pandemic

    Get PDF
    Due to the COVID-19 pandemic, many governments imposed lockdowns that forced hundreds of millions of citizens to stay at home. The implementation of confinement measures increased Internet traffic demands of residential users, in particular, for remote working, entertainment, commerce, and education, which, as a result, caused traffic shifts in the Internet core. In this paper, using data from a diverse set of vantage points (one ISP, three IXPs, and one metropolitan educational network), we examine the effect of these lockdowns on traffic shifts. We find that the traffic volume increased by 15-20% almost within a week – while overall still modest, this constitutes a large increase within this short time period. However, despite this surge, we observe that the Internet infrastructure is able to handle the new volume, as most traffic shifts occur outside of traditional peak hours. When looking directly at the traffic sources, it turns out that, while hypergiants still contribute a significant fraction of traffic, we see (1) a higher increase in traffic of non-hypergiants, and (2) traffic increases in applications that people use when at home, such as Web conferencing, VPN, and gaming. While many networks see increased traffic demands, in particular, those providing services to residential users, academic networks experience major overall decreases. Yet, in these networks, we can observe substantial increases when considering applications associated to remote working and lecturing.EC/H2020/679158/EU/Resolving the Tussle in the Internet: Mapping, Architecture, and Policy Making/ResolutioNe

    DDoS Hide &amp; Seek:On the effectiveness of a booter services takedown

    Get PDF
    Booter services continue to provide popular DDoS-as-a-service platforms and enable anyone irrespective of their technical ability, to execute DDoS attacks with devastating impact. Since booters are a serious threat to Internet operations and can cause significant financial and reputational damage, they also draw the attention of law enforcement agencies and related counter activities. In this paper, we investigate booter-based DDoS attacks in the wild and the impact of an FBI takedown targeting 15 booter websites in December 2018 from the perspective of a major IXP and two ISPs. We study and compare attack properties of multiple booter services by launching Gbps-level attacks against our own infrastructure. To understand spatial and temporal trends of the DDoS traffic originating from booters we scrutinize 5 months, worth of inter-domain traffic. We observe that the takedown only leads to a temporary reduction in attack traffic. Additionally, one booter was found to quickly continue operation by using a new domain for its website

    The High-Acceptance Dielectron Spectrometer HADES

    Get PDF
    HADES is a versatile magnetic spectrometer aimed at studying dielectron production in pion, proton and heavy-ion induced collisions. Its main features include a ring imaging gas Cherenkov detector for electron-hadron discrimination, a tracking system consisting of a set of 6 superconducting coils producing a toroidal field and drift chambers and a multiplicity and electron trigger array for additional electron-hadron discrimination and event characterization. A two-stage trigger system enhances events containing electrons. The physics program is focused on the investigation of hadron properties in nuclei and in the hot and dense hadronic matter. The detector system is characterized by an 85% azimuthal coverage over a polar angle interval from 18 to 85 degree, a single electron efficiency of 50% and a vector meson mass resolution of 2.5%. Identification of pions, kaons and protons is achieved combining time-of-flight and energy loss measurements over a large momentum range. This paper describes the main features and the performance of the detector system
    corecore