490 research outputs found
Recommended from our members
What does the future hold for utility electricity efficiency programs?
This study develops projections of future spending and savings from electricity efficiency programs funded by electric utility customers in the United States through 2030 based on three scenarios. Our analysis relies on detailed bottom-up modeling of current state energy efficiency policies, demand-side management and integrated resource plans, and regulatory decisions. The three scenarios represent a range of potential outcomes given the policy environment at the time of the study and uncertainties in the broader economic and state policy environment in each state. We project spending to increase to 11.1 billion in 2030 and remains relatively flat in the low case ($6.8 billion in 2030). Our analysis suggests that electricity efficiency programs funded by utility customers will continue to impact load growth significantly at least through 2030, as savings as a percent of retail sales are forecast at 0.7 percent in the medium scenario and 0.98 percent in the high scenario
Laser Writing of Semiconductor Nanoparticles and Quantum Dots
Silica aerogels were patterned with CdS using a photolithographic technique based on local heating with infrared (IR) light. The solvent of silica hydrogels was exchanged with an aqueous solution of the precursors CdNO3 and NH4 OH, all precooled to a temperature of 5°C. Half of the bathing solution was then replaced by a thiourea solution. After thiourea diffused into the hydrogels, the samples were exposed to a focused IR beam from a continuous wave, Nd-YAG laser. The precursors reacted in the spots heated by the IR beam to form CdS nanoparticles. We lithographed features with a diameter of about 40 µm, which extended inside the monoliths for up to 4 mm. Samples were characterized with transmission electron microscopy and optical absorption, photoluminescence, and Raman spectroscopies. Spots illuminated by the IR beam were made up by CdS nanoparticles dispersed in a silica matrix. The CdS nanoparticles had a diameter in the 4-6 nm range in samples exposed for 4 min to the IR beam, and of up to 100 nm in samples exposed for 10 min
Energy Efficiency Financing for Low- and Moderate-Income Households: Current State of the Market, Issues, and Opportunities
Ensuring that low- and moderate-income (LMI) households have access to energy efficiency is equitable, provides energy savings as a resource to meet energy needs, and can support multiple policy goals, such as affordable energy, job creation, and improved public health. Although the need is great, many LMI households may not be able to afford efficiency improvements or may be inhibited from adopting efficiency for other reasons. Decision-makers across the country are currently exploring the challenges and potential solutions to ramping up adoption of efficiency in LMI households, including the use of financing.
The report’s objective is to offer state and local policymakers, state utility regulators, program administrators, financial institutions, consumer advocates and other LMI stakeholders with an understanding of:
-The relationship between LMI communities and financing for energy efficiency, including important considerations for its use such as consumer protections
-The larger programmatic context of grant-based assistance and other related resources supporting LMI household energy efficiency
-Lessons learned from existing energy efficiency financing programs serving LMI households
-Financing products used by these programs and their relative advantages and disadvantages in addressing barriers to financing or to energy efficiency uptake for LMI household
Histological Evaluation of the Biocompatibility of Polyurea Crosslinked Silica Aerogel Implants in a Rat Model: A Pilot Study
Background: Aerogels are a versatile group of nanostructured/nanoporous materials with physical and chemical properties that can be adjusted to suit the application of interest. In terms of biomedical applications, aerogels are particularly suitable for implants such as membranes, tissue growth scaffolds, and nerve regeneration and guidance inserts. The mesoporous nature of aerogels can also be used for diffusion based release of drugs that are loaded during the drying stage of the material. From the variety of aerogels polyurea crosslinked silica aerogels have the most potential for future biomedical applications and are explored here. Methodology: This study assessed the short and long term biocompatibility of polyurea crosslinked silica aerogel implants in a Sprague-Dawley rat model. Implants were inserted at two different locations a) subcutaneously (SC), at the dorsum and b) intramuscularly (IM), between the gluteus maximus and biceps femoris of the left hind extremity. Nearby muscle and other internal organs were evaluated histologically for inflammation, tissue damage, fibrosis and movement (travel) of implant. Conclusion/Significance: In general polyurea crosslinked silica aerogel (PCSA) was well tolerated as a subcutaneous and an intramuscular implant in the Sprague-Dawley rat with a maximum incubation time of twenty months. In some cases a thin fibrous capsule surrounded the aerogel implant and was interpreted as a normal response to foreign material. No noticeable toxicity was found in the tissues surrounding the implants nor in distant organs. Comparison was made with control rats without any implants inserted, and animals with suture material present. No obvious or noticeable changes were sustained by the implants at either location. Careful necropsy and tissue histology showed age-related changes only. An effective sterilization technique for PCSA implants as well as staining and sectioning protocol has been established. These studies further support the notion that silica-based aerogels could be useful as biomaterials. © 2012 Sabri et al
Investigation of Polyurea-Crosslinked Silica Aerogels as a Neuronal Scaffold: A Pilot Study
BACKGROUND: Polymer crosslinked aerogels are an attractive class of materials for future implant applications particularly as a biomaterial for the support of nerve growth. The low density and nano-porous structure of this material combined with large surface area, high mechanical strength, and tunable surface properties, make aerogels materials with a high potential in aiding repair of injuries of the peripheral nervous system. however, the interaction of neurons with aerogels remains to be investigated. METHODOLOGY: In this work the attachment and growth of neurons on clear polyurea crosslinked silica aerogels (PCSA) coated with: poly-L-lysine, basement membrane extract (BME), and laminin1 was investigated by means of optical and scanning electron microscopy. After comparing the attachment and growth capability of neurons on these different coatings, laminin1 and BME were chosen for nerve cell attachment and growth on PCSA surfaces. The behavior of neurons on treated petri dish surfaces was used as the control and behavior of neurons on treated PCSA discs was compared against it. CONCLUSIONS/SIGNIFICANCE: This study demonstrates that: 1) untreated PCSA surfaces do not support attachment and growth of nerve cells, 2) a thin application of laminin1 layer onto the PCSA discs adhered well to the PCSA surface while also supporting growth and differentiation of neurons as evidenced by the number of processes extended and b3-tubulin expression, 3) three dimensional porous structure of PCSA remains intact after fixing protocols necessary for preservation of biological samples and 4) laminin1 coating proved to be the most effective method for attaching neurons to the desired regions on PCSA discs. This work provides the basis for potential use of PCSA as a biomaterial scaffold for neural regeneration
Entropic Tension in Crowded Membranes
Unlike their model membrane counterparts, biological membranes are richly
decorated with a heterogeneous assembly of membrane proteins. These proteins
are so tightly packed that their excluded area interactions can alter the free
energy landscape controlling the conformational transitions suffered by such
proteins. For membrane channels, this effect can alter the critical membrane
tension at which they undergo a transition from a closed to an open state, and
therefore influence protein function \emph{in vivo}. Despite their obvious
importance, crowding phenomena in membranes are much less well studied than in
the cytoplasm.
Using statistical mechanics results for hard disk liquids, we show that
crowding induces an entropic tension in the membrane, which influences
transitions that alter the projected area and circumference of a membrane
protein. As a specific case study in this effect, we consider the impact of
crowding on the gating properties of bacterial mechanosensitive membrane
channels, which are thought to confer osmoprotection when these cells are
subjected to osmotic shock. We find that crowding can alter the gating energies
by more than in physiological conditions, a substantial fraction of
the total gating energies in some cases.
Given the ubiquity of membrane crowding, the nonspecific nature of excluded
volume interactions, and the fact that the function of many membrane proteins
involve significant conformational changes, this specific case study highlights
a general aspect in the function of membrane proteins.Comment: 20 pages (inclduing supporting information), 4 figures, to appear in
PLoS Comp. Bio
Structural remodeling and oligomerization of human cathelicidin on membranes suggest fibril-like structures as active species
Antimicrobial peptides as part of the mammalian innate immune system target and remove major bacterial pathogens, often through irreversible damage of their cellular membranes. To explore the mechanism by which the important cathelicidin peptide LL-37 of the human innate immune system interacts with membranes, we performed biochemical, biophysical and structural studies. The crystal structure of LL-37 displays dimers of anti-parallel helices and the formation of amphipathic surfaces. Peptide-detergent interactions introduce remodeling of this structure after occupation of defined hydrophobic sites at the dimer interface. Furthermore, hydrophobic nests are shaped between dimer structures providing another scaffold enclosing detergents. Both scaffolds underline the potential of LL-37 to form defined peptide-lipid complexes in vivo. After adopting the activated peptide conformation LL-37 can polymerize and selectively extract bacterial lipids whereby the membrane is destabilized. The supramolecular fibril-like architectures formed in crystals can be reproduced in a peptide-lipid system after nanogold-labelled LL-37 interacted with lipid vesicles as followed by electron microscopy. We suggest that these supramolecular structures represent the LL-37-membrane active state. Collectively, our study provides new insights into the fascinating plasticity of LL-37 demonstrated at atomic resolution and opens the venue for LL-37-based molecules as novel antibiotics.We would like to thank Sandra Delgado for the technical help in the preparation of the cryoEM vitrified grids and Dr. Isabel Uson and Dr. Ivan De Marino for the Arcimboldo software and valuable help. Funding was provided by the Unidad de Biofisica and the IKERBASQUE and MINECO science foundations
Fertilization induces a transient exposure of phosphatidylserine in mouse eggs
Phosphatidylserine (PS) is normally localized to the inner leaflet of the plasma membrane and the requirement of PS translocation to the outer leaflet in cellular processes other than apoptosis has been demonstrated recently. In this work we investigated the occurrence of PS mobilization in mouse eggs, which express flippase Atp8a1 and scramblases Plscr1 and 3, as determined by RT-PCR; these enzyme are responsible for PS distribution in cell membranes. We find a dramatic increase in binding of flouresceinated-Annexin-V, which specifically binds to PS, following fertilization or parthenogenetic activation induced by SrCl2 treatment. This increase was not observed when eggs were first treated with BAPTA-AM, indicating that an increase in intracellular Ca2+ concentration was required for PS exposure. Fluorescence was observed over the entire egg surface with the exception of the regions overlying the meiotic spindle and sperm entry site. PS exposure was also observed in activated eggs obtained from CaMKIIγ null females, which are unable to exit metaphase II arrest despite displaying Ca2+ spikes. In contrast, PS exposure was not observed in TPEN-activated eggs, which exit metaphase II arrest in the absence of Ca2+ release. PS exposure was also observed when eggs were activated with ethanol but not with a Ca2+ ionophore, suggesting that the Ca2+ source and concentration are relevant for PS exposure. Last, treatment with cytochalasin D, which disrupts microfilaments, or jasplakinolide, which stabilizes microfilaments, prior to egg activation showed that PS externalization is an actin-dependent process. Thus, the Ca2+ rise during egg activation results in a transient exposure of PS in fertilized eggs that is not associated with apoptosis.Fil: Curia, Claudio Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); ArgentinaFil: Ernesto, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); ArgentinaFil: Stein, Paula. University of Pennsylvania; Estados UnidosFil: Busso, Dolores. Pontificia Universidad Católica de Chile; ChileFil: Schultz, Richard. University of Pennsylvania; Estados UnidosFil: Cuasnicu, Patricia Sara. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); ArgentinaFil: Cohen, Debora Juana. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); Argentin
D1.15 Impact Assessment Report for RP 2
This deliverable provides the impact assessment report for RP2 (M16-M30). It provides an update on the overall and specific objectives of the EXCELSIOR project that have been achieved within RP2. This task undertakes the establishment of a methodology for the yearly monitoring of the impact of the different activities carried out by Eratosthenes Centre of Excellence (ECoE) and its partners through EXCELSIOR against a set of quantified targets. The list of Key Performance Indicators established in D1.12 has been revised based on the comments received by the EXCELSIOR project reviewers on 23 June 2021 following the first project review. This list is hereby updated to reflect the activities of RP2. By monitoring the impact for the RP2, it will provide direction of the activities needed to fulfil the KPIs for the following reporting periods. The impact assessment report will be used to assess the implementation of the work plan and adjust the activities in agreement with WP and task Leaders to ensure the achievement of the Project’s strategic objectives. WP1 provides the KPI monitoring framework and general quality processes, while the WP3 defines concrete actions affecting all other WPs for meeting the Impact KPIs. This task’s activities will be coordinated with WP3 activities on strategy definition as a continuous process, in order to update the human resources, infrastructure acquisition and overall work plan and to meet new priorities identified. The analysis outputs will update the Project Action Plan of Task 1.1.
The following activities were examined and assessed according to the KPIs. These activities include proposals, dissemination events, publications, academia, networks, etc. The impact for each activity was also included
Earth Observation in the EMMENA Region: Scoping Review of Current Applications and Knowledge Gaps
Earth observation (EO) techniques have significantly evolved over time, covering a wide
range of applications in different domains. The scope of this study is to review the research conducted
on EO in the Eastern Mediterranean, Middle East, and North Africa (EMMENA) region and to
identify the main knowledge gaps. We searched through the Web of Science database for papers
published between 2018 and 2022 for EO studies in the EMMENA. We categorized the papers in
the following thematic areas: atmosphere, water, agriculture, land, disaster risk reduction (DRR),
cultural heritage, energy, marine safety and security (MSS), and big Earth data (BED); 6647 papers
were found with the highest number of publications in the thematic areas of BED (27%) and land
(22%). Most of the EMMENA countries are surrounded by sea, yet there was a very small number of
studies on MSS (0.9% of total number of papers). This study detected a gap in fundamental research
in the BED thematic area. Other future needs identified by this study are the limited availability of
very high-resolution and near-real-time remote sensing data, the lack of harmonized methodologies
and the need for further development of models, algorithms, early warning systems, and services
- …