47 research outputs found

    Ultra-flat twisted superlattices in 2D heterostructures

    Get PDF
    Moire-superlattices are ubiquitous in 2D heterostructures, strongly influencing their electronic properties. They give rise to new Dirac cones and are also at the origin of the superconductivity observed in magic-angle bilayer graphene. The modulation amplitude (corrugation) is an important yet largely unexplored parameter in defining the properties of 2D superlattices. The generally accepted view is that the corrugation monotonically decreases with increasing twist angle, while its effects on the electronic structure diminish as the layers become progressively decoupled. Here we found by lattice relaxation of around 8000 different Moire-superstructures using high scale Classical Molecular Simulations combined with analytical calculations, that even a small amount of external strain can substantially change this picture, giving rise to more complex behavior of superlattice corrugation as a function of twist angle. One of the most surprising findings is the emergence of an ultra-flat phase that can be present for arbitrary small twist angle having a much lower corrugation level than the decoupled phase at large angles. Furthermore, Moire-phase maps evidence that the state with no external strain is located in the close vicinity of a triple Moire-phase boundary, implying that very small external strain variations can cause drastic changes in the realized superlattice morphology and corrugation. This renders the practical realization of 2D heterostructures with large-area homogeneous superlattice morphology highly challenging

    Novel graphene/Sn and graphene/SnOx hybrid nanostructures: Induced superconductivity and band gaps revealed by scanning probe measurements

    Get PDF
    Abstract The development of functional composite nanomaterials based on graphene and metal nanoparticles (NPs) is currently the subject of intense research interest. In this study we report the preparation of novel type of graphene/Sn and graphene/SnOx (1 ≤ x ≤ 2) hybrid nanostructures and their investigation by scanning probe methods. First, we prepare Sn NPs by evaporating 7–8 nm tin on highly oriented pyrolytic graphite substrates. Graphene/Sn nanostructures are obtained by transferring graphene on top of the tin NPs immediately after evaporation. We show by scanning tunnelling microscopy (STM) and spectroscopy (STS) that tin NPs reduce significantly the environmental p-type doping of graphene. Furthermore, we demonstrate by low-temperature STM and STS measurements that superconductivity is induced in graphene, either directly supported by Sn NPs or suspended between them. Additionally, we prepare SnOx NPs by annealing the evaporated tin at 500 °C. STS measurements performed on hybrid graphene/SnOx nanostructures reveal the electronic band gap of SnOx NPs. The results can open new avenues for the fabrication of novel hybrid superconducting nanomaterials with designed structures and morphologies

    Highly wear-resistant and low-friction Si3N4 composites by addition of graphene nanoplatelets approaching the 2D limit

    Get PDF
    Abstract Graphene nanoplatelets (GNPs) have emerged as one of the most promising filler materials for improving the tribological performance of ceramic composites due to their outstanding solid lubricant properties as well as mechanical and thermal stability. Yet, the addition of GNPs has so far enabled only a very limited improvement in the tribological properties of ceramics, particularly concerning the reduction of their friction coefficient. This is most likely due to the challenges of achieving a continuous lubricating and protecting tribo-film through a high GNP coverage of the exposed surfaces. Here we demonstrate that this can be achieved by efficiently increasing the exfoliation degree of GNPs down to the few-layer (FL) range. By employing FL-GNPs as filler material, the wear resistance of Si3N4 composites can be increased by more than twenty times, the friction coefficient reduced to nearly its half, while the other mechanical properties are also preserved or improved. Confocal Raman spectroscopy measurements revealed that at the origin of the spectacular improvement of the tribological properties is the formation of a continuous FL- GNP tribo-film, already at 5 wt% FL-GNP content

    Exfoliation of large-area transition metal chalcogenide single layers

    Get PDF
    Isolating large-areas of atomically thin transition metal chalcogenide crystals is an important but challenging task. The mechanical exfoliation technique can provide single layers of the highest structural quality, enabling to study their pristine properties and ultimate device performance. However, a major drawback of the technique is the low yield and small (typically 2single layers with typical lateral sizes of several hundreds of microns. The idea is to exploit the chemical affinity of the sulfur atoms that can bind more strongly to a gold surface than the neighboring layers of the bulk MoS2 crystal. Moreover, we found that our exfoliation process is not specific to MoS2, but can be generally applied for various layered chalcogenides including selenites and tellurides, providing an easy access to large-area 2D crystals for the whole class of layered transition metal chalcogenides

    Exfoliation of single layer BiTeI flakes

    Get PDF
    Spin orbit interaction can be strongly boosted when a heavy element is embedded into an inversion asymmetric crystal field. A simple structure to realize this concept in a 2D crystal contains three atomic layers, a middle one built up from heavy elements generating strong atomic spin-orbit interaction and two neighboring atomic layers with different electron negativity. BiTeI is a promising candidate for such a 2D crystal, since it contains heavy Bi layer between Te and I layers. Recently the bulk form of BiTeI attracted considerable attention due to its giant Rashba interaction, however, 2D form of this crystal was not yet created. In this work we report the first exfoliation of single layer BiTeI using a recently developed exfoliation technique on stripped gold. Our combined scanning probe studies and first principles calculations show that SL BiTeI flakes with sizes of 100 μ\mum were achieved which are stable at ambient conditions. The giant Rashba splitting and spin-momentum locking of this new member of 2D crystals open the way towards novel spintronic applications and synthetic topological heterostructures.Comment: 20 pages, 5 figure

    Preparing local strain patterns in graphene by atomic force microscope based indentation

    Get PDF
    Patterning graphene into various mesoscopic devices such as nanoribbons, quantum dots, etc. by lithographic techniques has enabled the guiding and manipulation of graphene's Dirac-type charge carriers. Graphene, with well-defined strain patterns, holds promise of similarly rich physics while avoiding the problems created by the hard to control edge configuration of lithographically prepared devices. To engineer the properties of graphene via mechanical deformation, versatile new techniques are needed to pattern strain profiles in a controlled manner. Here we present a process by which strain can be created in substrate supported graphene layers. Our atomic force microscope-based technique opens up new possibilities in tailoring the properties of graphene using mechanical strain
    corecore