37 research outputs found

    Paper Session I-A - Advanced Manned Launch System (AMLS) Review

    Get PDF
    A status report on advanced manned launch system (AMLS) conceptual studies being conducted at the NASA Langley Research Center is presented. The primary goal of these studies is identifying means for lowering the cost of manned access to space while fulfilling mission needs. Attention is focused on partially and fully reusable launch concepts that employ an operations-oriented design approach. Identified in particular are vehicle systems, technologies, and operations factors which influence launch costs, mission, success, and safety

    Subsonic Aerodynamic Characteristics of a Circular Body Earth-to-Orbit Vehicle

    Get PDF
    A test of a generic reusable earth-to-orbit transport was conducted in the 7- by 10-Foot high-speed tunnel at the Langley Research Center at Mach number 0.3. The model had a body with a circular cross section and a thick clipped delta wing as the major lifting surface. For directional control, three different vertical fin arrangements were investigated: a conventional aft-mounted center vertical fin, wingtip fins, and a nose-mounted vertical fin. The configuration was longitudinally stable about the estimated center-of-gravity position of 0.72 body length and had sufficient pitch-control authority for stable trim over a wide range of angle of attack, regardless of fin arrangement. The maximum trimmed lift/drag ratio for the aft center-fin configuration was less than 5, whereas the other configurations had values of above 6. The aft center-fin configuration was directionally stable for all angles of attack tested. The wingtip and nose fins were not intended to produce directional stability but to be active controllers for artificial stabilization. Small rolling-moment values resulted from yaw control of the nose fin. Large adverse rolling-moment increments resulted from tip-fin controller deflection above 13 deg angle of attack. Flow visualization indicated that the adverse rolling-moment increments were probably caused by the influence of the deflected tip-fin controller on wing flow separation

    Dual-Fuel Propulsion in Single-Stage Advanced Manned Launch System Vehicle

    Get PDF
    As part of the United States Advanced Manned Launch System study to determine a follow-on, or complement, to the Space Shuttle, a reusable single-stage-to-orbit concept utilizing dual-fuel rocket propulsion has been examined. Several dual-fuel propulsion concepts were investigated. These include: a separate-engine concept combining Russian RD-170 kerosene-fueled engines with space shuttle main engine-derivative engines: the kerosene- and hydrogen-fueled Russian RD-701 engine; and a dual-fuel, dual-expander engine. Analysis to determine vehicle weight and size characteristics was performed using conceptual-level design techniques. A response-surface methodology for multidisciplinary design was utilized to optimize the dual-fuel vehicles with respect to several important propulsion-system and vehicle design parameters, in order to achieve minimum empty weight. The tools and methods employed in the analysis process are also summarized. In comparison with a reference hydrogen- fueled single-stage vehicle, results showed that the dual-fuel vehicles were from 10 to 30% lower in empty weight for the same payload capability, with the dual-expander engine types showing the greatest potential

    Life Cycle Analysis of Dedicated Nano-Launch Technologies

    Get PDF
    Recent technology advancements have enabled the development of small cheap satellites that can perform useful functions in the space environment. Currently, the only low cost option for getting these payloads into orbit is through ride share programs. As a result, these launch opportunities await primary payload launches and a backlog exists. An alternative option would be dedicated nano-launch systems built and operated to provide more flexible launch services, higher availability, and affordable prices. The potential customer base that would drive requirements or support a business case includes commercial, academia, civil government and defense. Further, NASA technology investments could enable these alternative game changing options.With this context, in 2013 the Game Changing Development (GCD) program funded a NASA team to investigate the feasibility of dedicated nano-satellite launch systems with a recurring cost of less than $2 million per launch for a 5 kg payload to low Earth orbit. The team products would include potential concepts, technologies and factors for enabling the ambitious cost goal, exploring the nature of the goal itself, and informing the GCD program technology investment decision making process. This paper provides an overview of the life cycle analysis effort that was conducted in 2013 by an inter-center NASA team. This effort included the development of reference nano-launch system concepts, developing analysis processes and models, establishing a basis for cost estimates (development, manufacturing and launch) suitable to the scale of the systems, and especially, understanding the relationship of potential game changing technologies to life cycle costs, as well as other factors, such as flights per year

    Life Cycle Analysis of Dedicated Nano-Launch Technologies

    Get PDF
    Recent technology advancements have enabled the development of small cheap satellites that can perform useful functions in the space environment. Currently, the only low cost option for getting these payloads into orbit is through ride share programs - small satellites awaiting the launch of a larger satellite, and then riding along on the same launcher. As a result, these small satellite customers await primary payload launches and a backlog exists. An alternative option would be dedicated nano-launch systems built and operated to provide more flexible launch services, higher availability, and affordable prices. The potential customer base that would drive requirements or support a business case includes commercial, academia, civil government and defense. Further, NASA technology investments could enable these alternative game changing options. With this context, in 2013 the Game Changing Development (GCD) program funded a NASA team to investigate the feasibility of dedicated nano-satellite launch systems with a recurring cost of less than $2 million per launch for a 5 kg payload to low Earth orbit. The team products would include potential concepts, technologies and factors for enabling the ambitious cost goal, exploring the nature of the goal itself, and informing the GCD program technology investment decision making process. This paper provides an overview of the life cycle analysis effort that was conducted in 2013 by an inter-center NASA team. This effort included the development of reference nano-launch system concepts, developing analysis processes and models, establishing a basis for cost estimates (development, manufacturing and launch) suitable to the scale of the systems, and especially, understanding the relationship of potential game changing technologies to life cycle costs, as well as other factors, such as flights per year

    NASA Systems Analysis and Concepts Directorate Mission and Trade Study Analysis

    Get PDF
    Mission analysis, as practiced by the NASA Langley Research Center's Systems Analysis and Concepts Directorate (SACD), consists of activities used to define, assess, and evaluate a wide spectrum of aerospace systems for given requirements. The missions for these systems encompass a broad range from aviation to space exploration. The customer, who is usually another NASA organization or another government agency, often predefines the mission. Once a mission is defined, the goals and objectives that the system will need to meet are delineated and quantified. A number of alternative systems are then typically developed and assessed relative to these goals and objectives. This is done in order to determine the most favorable design approaches for further refinement. Trade studies are performed in order to understand the impact of a requirement on each system and to select among competing design options. Items varied in trade studies typically include: design variables or design constraints; technology and subsystem options; and operational approaches. The results of trade studies are often used to refine the mission and system requirements. SACD studies have been integral to the decision processes of many organizations for decades. Many recent examples of SACD mission and trade study analyses illustrate their excellence and influence. The SACD-led, Agency-wide effort to analyze a broad range of future human lunar exploration scenarios for NASA s Exploration Systems Mission Directorate (ESMD) and the Mars airplane design study in support of the Aerial Regional-scale Environment Survey of Mars (ARES) mission are two such examples. This paper describes SACD's mission and trade study analysis activities in general and presents the lunar exploration and Mars airplane studies as examples of type of work performed by the SACD

    Lunar COTS: An Economical and Sustainable Approach to Reaching Mars

    Get PDF
    The NASA COTS (Commercial Orbital Transportation Services) Program was a very successful program that developed and demonstrated cost-effective development and acquisition of commercial cargo transportation services to the International Space Station (ISS). The COTS acquisition strategy utilized a newer model than normally accepted in traditional procurement practices. This new model used Space Act Agreements where NASA entered into partnerships with industry to jointly share cost, development and operational risks to demonstrate new capabilities for mutual benefit. This model proved to be very beneficial to both NASA and its industry partners as NASA saved significantly in development and operational costs while industry partners successfully expanded their market share of the global launch transportation business. The authors, who contributed to the development of the COTS model, would like to extend this model to a lunar commercial services program that will push development of technologies and capabilities that will serve a Mars architecture and lead to an economical and sustainable pathway to transporting humans to Mars. Over the past few decades, several architectures for the Moon and Mars have been proposed and studied but ultimately halted or not even started due to the projected costs significantly exceeding NASA's budgets. Therefore a new strategy is needed that will fit within NASA's projected budgets and takes advantage of the US commercial industry along with its creative and entrepreneurial attributes. The authors propose a new COTS-like program to enter into partnerships with industry to demonstrate cost-effective, cis-lunar commercial services, such as lunar transportation, lunar ISRU operations, and cis-lunar propellant depots that can enable an economical and sustainable Mars architecture. Similar to the original COTS program, the goals of the proposed program, being notionally referred to as Lunar Commercial Orbital Transfer Services (LCOTS) program will be to: 1) reduce development and operational costs by sharing costs with industry; 2) create new markets in cis-lunar space to further reduce operational costs; and 3) enable NASA to develop an affordable and economical exploration Mars architecture. The paper will describe a plan for a proposed LCOTS program, its potential impact to an eventual Mars architecture and its many benefits to NASA, commercial space industry and the US economy

    Payload Performance Analysis for a Reusable Two-Stage-to-Orbit Vehicle

    Get PDF
    This paper investigates a unique approach in the development of a reusable launch vehicle where, instead of designing the vehicle to be reusable from its inception, as was done for the Space Shuttle, an expendable two stage launch vehicle is evolved over time into a reusable launch vehicle. To accomplish this objective, each stage is made reusable by adding the systems necessary to perform functions such as thermal protection and landing, without significantly altering the primary subsystems and outer mold line of the original expendable vehicle. In addition, some of the propellant normally used for ascent is used instead for additional propulsive maneuvers after staging in order to return both stages to the launch site, keep loads within acceptable limits and perform a soft landing. This paper presents a performance analysis that was performed to investigate the feasibility of this approach by quantifying the reduction in payload capability of the original expendable launch vehicle after accounting for the mass additions, trajectory changes and increased propellant requirements necessary for reusability. Results show that it is feasible to return both stages to the launch site with a positive payload capability equal to approximately 50 percent of an equivalent expendable launch vehicle. Further discussion examines the ability to return a crew/cargo capsule to the launch site and presents technical challenges that would have to be overcome

    Approximation Model Building for Reliability & Maintainability Characteristics of Reusable Launch Vehicles

    Get PDF
    This paper describes the development of parametric models for estimating operational reliability and maintainability characteristics for reusable launch vehicle concepts, based on vehicle size and technology support level. A reliability and maintainability analysis tool (RMAT) and response surface methods are utilized to build parametric approximation models for rapidly estimating operational reliability and maintainability characteristics such as mission completion reliability. These models that approximate RMAT, can then be utilized for fast analysis of operational requirements, for lifecycle cost estimating and for multidisciplinary design optimization
    corecore