Motivation

- Technology advancements have enabled small cheap satellites that can perform useful functions
- Potential customers include commercial, academia, civil government and DOD
- Currently, the main option for getting these payloads into LEO is through ride share, limiting launch opportunities
- A proposed alternative approach is dedicated nano-satellite launch vehicles operated at an affordable price
- NASA to invest and enable the development of related technologies

Key Takeaways

- Limited experience base for this class of launch vehicles
- Estimated to cost 10s of \$M per launch in business-as-usual approaches
- Launch vehicle scale reductions alone do not enable the goal of $<\$ 2 \mathrm{M}$ recurring launch cost
- Preliminary analysis shows that nano-launcher technology investments can significantly improve dedicated nano-launch capabilities
- The combination of technologies and efficient commercial approaches can enable the goal of $<\$ 2 \mathrm{M}$ recurring launch cost

Project Team, Objective

- Inter-center, inter-agency team formed
- NASA LaRC SACD/VAB - Performance, Design, Costing
- John Martin (lead), Roger Lepsch, Hernani Tosoc
- NASA KSC - Life Cycle Cost (LCC) Estimation, Modeling
- Edgar Zapata, Carey McCleskey, Robert Johnson, Eddie Santiago
- Air Force Research Lab - Costing Tools, Technology Data
- Greg Moster, Bruce Thieman
- Identify primary cost drivers for small launch vehicles (nano-small payload class, 5-100 kg)
- Identify technology and concept opportunities to significantly reduce launch cost
- Determine feasibility of achieving goal of < \$2 M for a dedicated launch capability
- Cost goal established in 2013 NESC nano-launcher assessment study conducted by R. Garcia
- DARPA ALASA and US Army SWORDS each set goal of \$1M per launch

Related Investments

- Government
- ALASA (DARPA) - 45 kg , air-launch
- SWORDS (Army) - 25 kg , mobile ground launch
- Super Strypi (Sandia-USAF/SMC) - 300 kg, rail launch
- Commercial (partial listing)
- Garvey Aerospace - non-toxic liquid, rail launch
- Scorpius - pressure fed liquid
- Raytheon - solid (developing a $\$ 2 \mathrm{M}$ small sat launcher to fly under wing of F-15)
- Generation Orbit/Space Propulsion Group (SPG) - hybrid
- NEXT (NASA) - $15 \mathrm{~kg}(3 \times 3 \mathrm{U}$,$) \$2.1M single flight services contract$
- Ventions, Inc. - micro turbo pumps, vortex combustion
- Whittinghill Aerospace - hybrid

Nano-satellite Market Summary

- Price-of-entry with traditional, larger satellites, and their larger launchers, coupled with NASA budgetary pressures, driving small-sat innovation
- Universities currently dominate the Nano-sat/cube-sat field
- NASA and 2DoD also creating demand
- NASA Cube-Sat Launch Initiative (CSLI)
- Most CSLI awards to date have been to universities
- DoD spurring supply/launchers (SWORDS, ALASA)
- Private sector also responding with supply/launchers (Garvey, Raytheon, etc.)
- Private sector small-sat/cube-sat field is growing fast
- Likely to dominate future market-and soon
- Demand being driven by increasing and envisioned small-sat capabilities
- Small-sats as an increasingly accessible, participatory technology

PARAMETER	VALUE / RANGE	NOTE
Target Orbit:	45° Inclination 400 km Altitude	Target values within range of interest 0° - 98° Incl., 350 - 650 km Alt.
Launch Latitude	38°	Wallops; close to target inclination Others: KSC, Vandenberg, Airlaunch
Payload mass on orbit	5 kg	Mass of free-flying, deployed spacecraft (range of 5 - 50 kg)
Insertion accuracy	$\pm 75 \mathrm{~km}$ orbit altitude $\pm 1^{\circ}$ Orbit inclination	Accuracies are not critical for many small and very small spacecraft - Need to understand sensitivity
Spacecraft accommodations	- Separation signal - T-0 trickle charge - Environmental control within fairing - Narrowband telemetry on launch	Desire minimal demands on launch vehicle - Need environment specs - Payload status for rapid calibration
Load/Environment Limits (Payload)	20 g axial acceleration 5 g lateral acceleration	Need to determine limits on payload
Launch cost (recurring)	<\$2M/launch <\$1M/launch (stretch goal)	Goal Assumes annual flight rate of 12
Responsiveness	<48 hours call-up time <24 hours call-up time (stretch goal)	Goal - Relates to military ops Source: ALASA and SWORDS
Launch Reliability	0.9	Can accept lower reliability due to very low satellite cost

- Assume state-of-the-art technologies and business-as-usual practices as a baseline for vehicle concepts
- Maintain payload capabilities through vehicle resizing
- Recurring launch cost goal assumed to include recurring manufacturing and operations (including launch), fixed and variable costs, but not upfront, non-recurring development
- Assume Poly Pico-satellite Orbital Deployer (P-POD)
- Have deployed $>90 \%$ of all CubeSats to date
- 100\% of all CubeSats since 2006
- Standard payload accommodations
- No services, no customizing
- Akin to rideshare accommodations
- "No trickle charging, spot purging or driving cleanliness requirements" (Re. Space-X Secondary Payloads Hosting)

Assessment Process - Reference, Historical, Sanity Checks

- Quantitative and Qualitative Reference Systems
- NASA Scout (ACT and LCC top-down modeling, anchors/baselines)
- Aerospace sub-systems (SEER bottoms-up modeling, baselines)
- Pegasus XL, Minotaur, Surface-to-Air missiles (at Nano-Launcher scale, for costs, lot sizes, etc.), Atlas/Falcon (for contrasts in practices), and previous assessments (Kibbey).

Assessment Process - Baselines \& Reference

- Define baseline concepts to conduct assessments
- Span the range of relevant approaches and technologies for a dedicated 5 kg payload nano-launcher
- Reflect current approaches and state of art technologies
- To be modeled to a fidelity sufficient for the technology trades of interest
- Develop reference concepts to benchmark assessment metrics
- Identify cost drivers using reference concepts
- Perform technology trades/assessments on baseline concepts to address cost drivers
- Provide technology impacts and investment recommendations

Baseline Concept	Launch Mode	Baseline Features/Assumptions
4 stage solid motor design	Rail	Spin stabilized $1^{\text {st }} \& 2^{\text {nd }}$ stages, Attitude control upper stages
3 stage pressure fed liquid	Pad	Pressure fed LOX/RP, TVC, Composite tanks/structure, etc.
3 stage hybrid motor design	Pad	HTPB fuel, Composite structure, TVC, etc.

Assessment Process - Baselines \& Reference

- Baselines span a range of relevant approaches
- Sufficient detail to allow assessment of the technology and life cycle drivers of interest
- Phase I summer 2013 task centered mostly on Concept 1 - a 4 stage solid
- Reference concept Scout studied
 extensively

Scout
Historical
4-stage Solid

Payload: 200 kg

Assessment Process - Summary

Results - Example

- Technology Assessment

- Product Technology
- Common avionics
- COTS avionics
- Non-toxic propellants
- Hybrid/solid propulsion
- Non-toxic RCS
- Manufacturing Technology
- Composites

- Materials (Nano-tubes)
- Out-of-autoclave composites
- 3D Printing (DLMS, etc.)
- Segmented Solid/Cartridge(?) Production
- Ops/Launch Technology
- FTS (AFSS)
- Automated/standard launch planning (AFSS)
- Manufacturing concepts
- Automation/robotics
- Cellular manufacturing
- Operations Concepts
- Payload Integration/service
level
0
0
0
- What does technology X do to this component of cost, affecting it's causes of cost, it's cost drivers?
- Responsiveness/flight rate capability (productivity) also co-related similarly
- Need involvement of the technology community

Forward Work

- Design and analyze all concepts identified in Phase I task to a higher level of fidelity including additional concepts
- Develop refined life cycle cost estimates for all concepts
- Continue to develop technology assessment/modeling process (including tech prioritization output formats)
- Gather and organize information on potential technologies to enable assessments at systems level
- Explore nano-satellite market segments and study various business case scenarios

In Closing

- Promising evidence that a dedicated nano-launcher can reach a recurring manufacturing + launch goal of $\sim \$ 1 \mathrm{M}-\$ 2 \mathrm{M}$ a launch.
- Our assessment points in specific directions suitable for NASA investments, technology:
- To increase flight rate capability of a resulting infrastructure \& organization
- To reduce production/operations infrastructure and their fixed costs
- System level cost drivers should inform system level investments.
- Technical: reduced scale of systems only get recurring costs so far.
- Small scale does not assure low costs.
- Distinct functional hardware/software requirements must be addressed.
- Non-technical: market or flight rate assumptions only get recurring costs so far.
- High flight rate does not assure low costs.
- A highly productive infrastructure/organization will yield a low recurring cost, and a price, that should encourage more flight demand, but flight rate demand alone will not resolve recurring cost issues.

Backup

Launch Capability - Current

- Current dedicated small-sat launchers do not meet the needs of nanosat community
- e.g., Pegasus XL/Minotaur (443-1735kg/LEO) @ \$40-\$50M/launch
- Additionally, contract to launch time 18 months or more
- Rideshare opportunities are cheap but very constraining
- As secondary payload, constrained to primary mission orbit and schedule
- Current commercial rideshare rates:
- $\$ 100 \mathrm{~K}$ - $\$ 600 \mathrm{~K}$ for nanosat (1-10 kg),
- $\$ 600 \mathrm{~K}-\$ 3 \mathrm{M}$ for microsat (10-100 kg),
- $\$ 3 \mathrm{M}-\$ 8 \mathrm{M}$ for smallsat (100-500 kg)
- Contract to launch time still 18 months or more

Recurring Cost Insight

Concept 1 baseline for technology \& life cycle assessment

- Baseline Design and Technology Assumptions
- Payload Mass: 10 kg (5 kg target)
- Configuration: 4-Stage, Expendable
- Launch Mode: Rail launch
- Propulsion: All solid
- Propellants: HTPB
- Structures: All composite
- Guidance \& Cntrl: Spin/Fin stabilized+ACS
- FTS: Destruct (stages 3 \& 4 only)
- Vehicle Integration: Horizontal
- Acquisition Concept: Traditional/Gov.
- Manufacturing/Ops/Launch Approach: Traditional/Business-As-Usual
- Performance Characteristics
- Dry Mass: 630 kg
- Gross Mass: 8130 kg

Concept 2 baseline for technology \& life cycle assessment

- Baseline Design and Technology Assumptions
- Payload Mass: 9 kg (5 kg target)
- Configuration: 2-Stage, Expendable
- Launch Mode: Pad launch
- Propulsion: Pressure-fed-He w/HX
- Propellants: LOX, RP-1 (mix ratio 2.6)
- Structures: All composite
- Guidance \& Cntrl: TVC- Battery/EMA
- FTS: Thrust cutoff + Destruct
- Vehicle Integration: Horizontal
- Acquisition Concept: Traditional/Gov.
- Manufacturing/Ops/Launch Approach: Traditional/Business-As-Usual
- Performance Characteristics
- Dry Mass: 255 kg
- Gross Mass: 1800 kg

