209 research outputs found

    Chromosomal diversification and karyotype evolution of diploids in the cytologically diverse genus Prospero (Hyacinthaceae)

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited

    Analysis of the giant genomes of Fritillaria (Liliaceae) indicates that a lack of DNA removal characterizes extreme expansions in genome size.

    Get PDF
    This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.Plants exhibit an extraordinary range of genome sizes, varying by > 2000-fold between the smallest and largest recorded values. In the absence of polyploidy, changes in the amount of repetitive DNA (transposable elements and tandem repeats) are primarily responsible for genome size differences between species. However, there is ongoing debate regarding the relative importance of amplification of repetitive DNA versus its deletion in governing genome size. Using data from 454 sequencing, we analysed the most repetitive fraction of some of the largest known genomes for diploid plant species, from members of Fritillaria. We revealed that genomic expansion has not resulted from the recent massive amplification of just a handful of repeat families, as shown in species with smaller genomes. Instead, the bulk of these immense genomes is composed of highly heterogeneous, relatively low-abundance repeat-derived DNA, supporting a scenario where amplified repeats continually accumulate due to infrequent DNA removal. Our results indicate that a lack of deletion and low turnover of repetitive DNA are major contributors to the evolution of extremely large genomes and show that their size cannot simply be accounted for by the activity of a small number of high-abundance repeat families.Thiswork was supported by the Natural Environment ResearchCouncil (grant no. NE/G017 24/1), the Czech Science Fou nda-tion (grant no. P501/12/G090), the AVCR (grant no.RVO:60077344) and a Beatriu de Pinos postdoctoral fellowshipto J.P. (grant no. 2011-A-00292; Catalan Government-E.U. 7thF.P.)

    Hepatic effects of tartrazine (E 102) after systemic exposure are independent of oestrogen receptor interactions in the mouse

    Get PDF
    Tartrazine is a food colour that activates the transcriptional function of the human oestrogen receptor alpha in an in vitro cell model. Since oestrogens are cholestatic, we hypothesised tartrazine will cause periportal injury to the liver in vivo. To test this hypothesis, tartrazine was initially administered systemically to mice resulting in a periportal recruitment of inflammatory cells, increased serum alkaline phosphatase activity and mild periportal fibrosis. To determine whether an oestrogenic effect may be a key event in this response, tartrazine, sulphonated metabolites and a food additive contaminant were screened for their ability to interact with murine oestrogen receptors. In all cases, there were no interactions as agonists or antagonists and further, no oestrogenicity was observed with tartrazine in an in vivo uterine growth assay. To examine the relevance of the hepatic effects of tartrazine to its use as a food additive, tartrazine was orally administered to transgenic NF-κB-Luc mice. Pre- and concurrent oral treatment with alcohol was incorporated given its potential to promote gut permeability and hepatic inflammation. Tartrazine alone induced NF- κB activities in the colon and liver but there was no periportal recruitment of inflammatory cells or fibrosis. Tartrazine, its sulphonated metabolites and the contaminant inhibited sulphotransferase activities in murine hepatic S9 extracts. Given the role of sulfotransferases in bile acid excretion, the initiating event giving rise to periportal inflammation and subsequent hepatic pathology through systemic tartrazine exposure is therefore potentially associated an inhibition of bile acid sulphation and excretion and not on oestrogen receptor-mediated transcriptional function. However, these effects were restricted to systemic exposures to tartrazine and did not occur to any significant effect after oral exposure

    Similar patterns of rDNA evolution in synthetic and recently formed natural populations of Tragopogon (Asteraceae) allotetraploids

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Tragopogon mirus </it>and <it>T. miscellus </it>are allotetraploids (2<it>n </it>= 24) that formed repeatedly during the past 80 years in eastern Washington and adjacent Idaho (USA) following the introduction of the diploids <it>T. dubius</it>, <it>T. porrifolius</it>, and <it>T. pratensis </it>(2<it>n </it>= 12) from Europe. In most natural populations of <it>T. mirus </it>and <it>T. miscellus</it>, there are far fewer 35S rRNA genes (rDNA) of <it>T. dubius </it>than there are of the other diploid parent (<it>T. porrifolius </it>or <it>T. pratensis</it>). We studied the inheritance of parental rDNA loci in allotetraploids resynthesized from diploid accessions. We investigate the dynamics and directionality of these rDNA losses, as well as the contribution of gene copy number variation in the parental diploids to rDNA variation in the derived tetraploids.</p> <p>Results</p> <p>Using Southern blot hybridization and fluorescent <it>in situ </it>hybridization (FISH), we analyzed copy numbers and distribution of these highly reiterated genes in seven lines of synthetic <it>T. mirus </it>(110 individuals) and four lines of synthetic <it>T. miscellus </it>(71 individuals). Variation among diploid parents accounted for most of the observed gene imbalances detected in F<sub>1 </sub>hybrids but cannot explain frequent deviations from repeat additivity seen in the allotetraploid lines. Polyploid lineages involving the same diploid parents differed in rDNA genotype, indicating that conditions immediately following genome doubling are crucial for rDNA changes. About 19% of the resynthesized allotetraploid individuals had equal rDNA contributions from the diploid parents, 74% were skewed towards either <it>T. porrifolius </it>or <it>T. pratensis</it>-type units, and only 7% had more rDNA copies of <it>T. dubius</it>-origin compared to the other two parents. Similar genotype frequencies were observed among natural populations. Despite directional reduction of units, the additivity of 35S rDNA locus number is maintained in 82% of the synthetic lines and in all natural allotetraploids.</p> <p>Conclusions</p> <p>Uniparental reductions of homeologous rRNA gene copies occurred in both synthetic and natural populations of <it>Tragopogon </it>allopolyploids. The extent of these rDNA changes was generally higher in natural populations than in the synthetic lines. We hypothesize that locus-specific and chromosomal changes in early generations of allopolyploids may influence patterns of rDNA evolution in later generations.</p

    Is post-polyploidization diploidization the key to the evolutionary success of angiosperms?

    Get PDF
    Advances in recent years have revolutionized our understanding of both the context and occurrence of polyploidy in plants. Molecular phylogenetics has vastly improved our understanding of plant relationships, enabling us to better understand trait and character evolution, including chromosome number changes. This, in turn, has allowed us to appreciate better the frequent occurrence and extent of polyploidy throughout the history of angiosperms, despite the occurrence of low chromosome numbers in some groups, such as in Arabidopsis (A. thaliana was the first plant genome to be sequenced and assembled). In tandem with an enhanced appreciation of phylogenetic relationships, the accumulation of genomic data has led to the conclusion that all angiosperms are palaeopolyploids, together with better estimates of the frequency and type of polyploidy in different angiosperm lineages. The focus therefore becomes when a lineage last underwent polyploidization, rather than simply whether a plant is ‘diploid’ or ‘polyploid’. This legacy of past polyploidization in plants is masked by large-scale genome reorganization involving repetitive DNA loss, chromosome rearrangements (including fusions and fissions) and complex patterns of gene loss, a set of processes that are collectively termed ‘diploidization’. We argue here that it is the diploidization process that is responsible for the ‘lag phase’ between polyploidization events and lineage diversification. If so, diploidization is important in determining chromosome structure and gene content, and has therefore made a significant contribution to the evolutionary success of flowering plants

    The ecology of palm genomes: repeat-associated genome size expansion is constrained by aridity

    Get PDF
    Genome size varies 2400-fold across plants, influencing their evolution through changes in cell size and cell division rates which impact plants' environmental stress tolerance. Repetitive element expansion explains much genome size diversity, and the processes structuring repeat "communities" are analogous to those structuring ecological communities. However, which environmental stressors influence repeat community dynamics has not yet been examined from an ecological perspective. We measured genome size and leveraged climatic data for 91% of genera within the ecologically diverse palm family (Arecaceae). We then generated genomic repeat profiles for 141 palm species, and analysed repeats using phylogenetically informed linear models to explore relationships between repeat dynamics and environmental factors. We show that palm genome size and repeat "community" composition are best explained by aridity. Specifically, Ty3-gypsy and TIR elements were more abundant in palm species from wetter environments, which generally had larger genomes, suggesting amplification. By contrast, Ty1-copia and LINE elements were more abundant in drier environments. Our results suggest that water stress inhibits repeat expansion through selection on upper genome size limits. However, elements that may associate with stress-response genes (e.g. Ty1-copia) have amplified in arid-adapted palm species. Overall, we provide novel evidence of climate influencing the assembly of repeat "communities".JP was supported by a Ramón y Cajal Fellowship (RYC-2017-2274) funded by MCIN/AEI/10.13039/501100011033 and by ‘ESF Investing in your future’. SB was funded by a Garfield Weston Foundation postdoctoral fellowship. PN and JM were supported by the ELIXIR CZ Research Infrastructure Project (Czech Ministry of Education, Youth and Sports; grant no. LM2018131).IntroductionMaterials and Methods Plant material collection and genome size measurement Phylogenetic, environmental and genomic data collection Modelling relationships between genome size and environmental variables DNA repeat profiling Assessing repeat dynamics in palm genomesResults Palm genome size variation Aridity preferences of palm species help explain genome size variation Ecological metrics of palm repeat ‘communities’ vary with genome size Repeat abundances correlate with genome size Aridity preferences of palm species explain abundances of certain repeat lineagesDiscussion Palm genome size variation Aridity thresholds best explain palm genome size diversity The ‘community ecology’ of repeats correlates with genome size Repeat dynamics may be modulated by aridityConclusionsAcknowledgementsAuthor contributionsPeer reviewe

    Genome size diversity in angiosperms and its influence on gene space

    Get PDF
    Genome size varies c. 2400-fold in angiosperms (flowering plants), although the range of genome size is skewed towards small genomes, with a mean genome size of 1C = 5.7 Gb. One of the most crucial factors governing genome size in angiosperms is the relative amount and activity of repetitive elements. Recently, there have been new insights into how these repeats, previously discarded as ‘junk’ DNA, can have a significant impact on gene space (i.e. the part of the genome comprising all the genes and gene-related DNA). Here we review these new findings and explore in what ways genome size itself plays a role in influencing how repeats impact genome dynamics and gene space, including gene expression

    Analysis of lesion localisation at colonoscopy: outcomes from a multi-centre U.K. study

    Get PDF
    Background: Colonoscopy is currently the gold standard for detection of colorectal lesions, but may be limited in anatomically localising lesions. This audit aimed to determine the accuracy of colonoscopy lesion localisation, any subsequent changes in surgical management and any potentially influencing factors. Methods: Patients undergoing colonoscopy prior to elective curative surgery for colorectal lesion/s were included from 8 registered U.K. sites (2012–2014). Three sets of data were recorded: patient factors (age, sex, BMI, screener vs. symptomatic, previous abdominal surgery); colonoscopy factors (caecal intubation, scope guide used, colonoscopist accreditation) and imaging modality. Lesion localisation was standardised with intra-operative location taken as the gold standard. Changes to surgical management were recorded. Results: 364 cases were included; majority of lesions were colonic, solitary, malignant and in symptomatic referrals. 82% patients had their lesion/s correctly located at colonoscopy. Pre-operative CT visualised lesion/s in only 73% of cases with a reduction in screening patients (64 vs. 77%; p = 0.008). 5.2% incorrectly located cases at colonoscopy underwent altered surgical management, including conversion to open. Univariate analysis found colonoscopy accreditation, scope guide use, incomplete colonoscopy and previous abdominal surgery significantly influenced lesion localisation. On multi-variate analysis, caecal intubation and scope guide use remained significant (HR 0.35, 0.20–0.60 95% CI and 0.47; 0.25–0.88, respectively). Conclusion: Lesion localisation at colonoscopy is incorrect in 18% of cases leading to potentially significant surgical management alterations. As part of accreditation, colonoscopists need lesion localisation training and awareness of when inaccuracies can occur

    Continuous flow mechanochemistry: reactive extrusion as an enabling technology in organic synthesis

    Get PDF
    apid and wide-ranging developments have established mechanochemistry as a powerful avenue in sustainable organic synthesis. This is primarily due to unique opportunities which have been offered in solvent-free – or highly solvent-minimised – reaction systems. Nevertheless, despite elegant advances in ball-milling technology, limitations in scale-up still remain. This tutorial review covers the first reports into the translation from “batch-mode” ball-milling to “flow-mode” reactive extrusion, using twin-screw extrusion
    corecore