665 research outputs found

    CAPITAL PRETRIAL MOTIONS: ADDED DIMENSIONS

    Full text link

    New public management and the rise of public sector performance audit: evidence from the Australian case

    Get PDF
    Purpose: In the context of global new public management reform trends and the associated phenomenon of performance auditing (PA), the purpose of this paper is to explore the rise of performance audit in Australia and examines its focus across audit jurisdictions and the role key stakeholders play in driving its practice. Design/methodology/approach: The study adopts a multi-jurisdictional analysis of PA in Australia to explore its scale and focus, drawing on the theoretical tools of Goffman. Documentary analysis and interview methods are employed. Findings: Performance audit growth has continued but not always consistently over time and across audit jurisdictions. Despite auditor discourse concerning backstage performance audit intentions being strongly focussed on evaluating programme outcomes, published front stage reports retain a strong control focus. While this appears to reflect Auditors-General (AGs) reluctance to critique government policy, nonetheless there are signs of direct and indirectly recursive relationships emerging between AGs and parliamentarians, the media and the public. Research limitations/implications: PA merits renewed researcher attention as it is now an established process but with ongoing variability in focus and stakeholder influence. Social implications: As an audit technology now well-embedded in the public sector accountability setting, it offers potential insights into matters of local, state and national importance for parliament and the public, but exhibits variable underlying drivers, agendas and styles of presentation that have the capacity to enhance or detract from the public interest. Originality/value: Performance audit emerges as a complex practice deployed as a mask by auditors in managing their relationship with key stakeholders

    Wavelength Dependent Specific Plasmon Resonance Coupling of Single Silver Nanoparticles with EGFP

    Get PDF
    Noble metal nanoparticles (NPs) possess unique plasmonic properties, enabling them to serve as sub-diffraction light sources and nano-antennae for a wide range of applications. Here we report the specific interaction of single Ag NPs with single EGFP molecules and a high dependence of their interaction upon localized-surface-plasmon-resonance (LSPR) spectra of single Ag NPs and EGFP. The LSPR spectra of single red Ag NPs show a stunning 60 nm blue-shift during their incubation with EGFP, whereas they remain unchanged during their incubation with bovine serum albumin (BSA). Interestingly, the peak wavelengths of the LSPR spectra of green and blue Ag NPs remain essentially unchanged during their incubation with either EGFP or BSA. These interesting findings suggest that plasmon-resonance-energy-transfer (PRET) from single Ag NPs to EGFP might follow a two-photon excitation mechanism to excite EGFP and the fluorescence of the excited EGFP might couple with the plasmon of single NPs leading to a blue-shift of the red NPs. These distinctive phenomena are only observed by real-time single NP spectroscopic measurements. This study offers exciting new opportunities to design new sensing and imaging tools with high specificity and sensitivity to study longrange molecular interactions and dynamic events in single live cells, and to probe the underlying molecular mechanisms of PRET

    Silver Nanoparticles Induce Developmental Stage-Specific Embryonic Phenotypes in Zebrafish

    Get PDF
    Much is anticipated from the development and deployment of nanomaterials in biological organisms, but concerns remain regarding their biocompatibility and target specificity. Here we report our study of the transport, biocompatibility and toxicity of purified and stable silver nanoparticles (Ag NPs, 13.1 ± 2.5 nm in diameter) upon the specific developmental stages of zebrafish embryos using single NP plasmonic spectroscopy. We find that single Ag NPs passively diffuse into five different developmental stages of embryos (cleavage, early-gastrula, early-segmentation, late-segmentation, and hatching stages), showing stage-independent diffusion modes and diffusion coefficients. Notably, the Ag NPs induce distinctive stage and dose-dependent phenotypes and nanotoxicity, upon their acute exposure to the Ag NPs (0–0.7 nM) for only 2 h. The late-segmentation embryos are most sensitive to the NPs with the lowest critical concentration (CNP,c ≪ 0.02 nM) and highest percentages of cardiac abnormalities, followed by early-segmentation embryos (CNP,c \u3c 0.02 nM), suggesting that disruption of cell differentiation by the NPs causes the most toxic effects on embryonic development. The cleavage-stage embryos treated with the NPs develop to a wide variety of phenotypes (abnormal finfold, tail/spinal cord flexure, cardiac malformation, yolk sac edema, and acephaly). These organ structures are not yet developed in cleavage-stage embryos, suggesting that the earliest determinative events to create these structures are ongoing, and disrupted by NPs, which leads to the downstream effects. In contrast, the hatching embryos are most resistant to the Ag NPs, and majority of embryos (94%) develop normally, and none of them develops abnormality. Interestingly, early-gastrula embryos are less sensitive to the NPs than cleavage and segmentation stage embryos, and do not develop abnormally. These important findings suggest that the Ag NPs are not simple poisons, and they can target specific pathways in development, and potentially enable target specific study and therapy for early embryonic development

    In Vivo Imaging of Transport and Biocompatibility of Single Silver Nanoparticles in Early Development of Zebrafish Embryos

    Get PDF
    Real-time study of the transport and biocompatibility of nanomaterials in early embryonic development at single-nanoparticle resolution can offer new knowledge about the delivery and effects of nanomaterials in vivo, and provide new insights into molecular transport mechanisms in developing embryos. In this study, we directly characterized the transport of single silver nanoparticles into an in vivo model system (zebrafish embryos) and investigated their effects on early embryonic development at single-nanoparticle resolution in real time. We designed highly purified and stable (not aggregated and no photodecomposition) nanoparticles and developed single-nanoparticle optics and in vivo assays to enable the study. We found that single Ag nanoparticles (5- 46 nm) transport in and out of embryos through chorion pore canals (CPCs), and exhibit Brownian diffusion (not active transport), with ∼26 times lower diffusion coefficient (3×10-9 cm2/s) inside the chorionic space than that in egg water (7.7×10-8 cm2/s). In contrast, nanoparticles were trapped inside CPCs and the inner mass of the embryos, showing restricted diffusion. Individual Ag nanoparticles were observed inside embryos at each developmental stage and in normally developed, deformed, and dead zebrafish, showing that the biocompatibility and toxicity of Ag nanoparticles and types of abnormalities observed in zebrafish are highly dependent on the dose of Ag nanoparticles, with a critical concentration of 0.19 nM. Rates of passive diffusion and accumulation of nanoparticles in embryos are likely responsible for the dose-dependent abnormalities. Unlike other chemicals, single nanoparticles can be directly imaged inside developing embryos at nanometer (nm) spatial resolution, offering new opportunities to unravel the related pathways that lead to the abnormalities

    Continuous Synthesis of Artemisinin-Derived Medicines

    Get PDF
    Described is a continuous, divergent synthesis system which is coupled to continuous purification and is capable of producing four anti-malarial APIs. The system is comprised of three linked reaction modules for photooxidation/cyclization, reduction, and derivatization. A fourth module couples the crude reaction stream with continuous purification to yield pure API

    Single Nanoparticle Plasmonic Spectroscopy for Study of the Efflux Function of Multidrug ABC Membrance Transporters of Single Live Cells

    Get PDF
    ATP-binding cassette (ABC) membrane transporters exist in all living organisms and play key roles in a wide range of cellular and physiological functions. The ABC transporters can selectively extrude a wide variety of structurally and functionally unrelated substrates, leading to multidrug resistance. Despite extensive study, their efflux molecular mechanisms remain elusive. In this study, we synthesized and characterized purified silver nanoparticles (Ag NPs) (97 ± 13 nm in diameter), and used them as photostable optical imaging probes to study efflux kinetics of ABC membrane transporters (BmrA) of single live cells (B. subtilis). The NPs with concentrations up to 3.7 pM were stable (non-aggregated) in a PBS buffer and biocompatible with the cells. We found a high dependence of accumulation of the intracellular NPs in single live cells (WT, Ct-BmrAEGFP, ΔBmrA) upon the cellular expression level of BmrA and NP concentration (0.93, 1.85 and 3.7 pM), showing the highest accumulation of intracellular NPs in ΔBmrA (deletion of BmrA) and the lowest ones in Ct-BmrA-EGFP (over-expression of BmrA). Interestingly, the accumulation of intracellular NPs in ΔBmrA increases nearly proportionally with the NP concentration, while those in WT and Ct-BmrA-EGFP do not. This result suggests that the NPs enter the cells via passive diffusion driven by concentration gradients across the cellular membrane and they are extruded out of cells by BmrA transporters, similar to conventional pump substrates (antibiotics). This study shows that such large substrates (84-100 nm NPs) can enter into the live cells and be extruded out of the cells by BmrA, and the NPs can serve as nm-sized optical imaging probes to study the size-dependent efflux kinetics of membrane transporters in single live cells in real time

    A novel secreted protein, MYR1, is central to Toxoplasma’s manipulation of host cells

    Get PDF
    The intracellular protozoan Toxoplasma gondii dramatically reprograms the transcriptome of host cells it infects, including substantially up-regulating the host oncogene c-myc. By applying a flow cytometry-based selection to infected mouse cells expressing green fluorescent protein fused to c-Myc (c-Myc–GFP), we isolated mutant tachyzoites defective in this host c-Myc up-regulation. Whole-genome sequencing of three such mutants led to the identification of MYR1 (Myc regulation 1; TGGT1_254470) as essential for c-Myc induction. MYR1 is a secreted protein that requires TgASP5 to be cleaved into two stable portions, both of which are ultimately found within the parasitophorous vacuole and at the parasitophorous vacuole membrane. Deletion of MYR1 revealed that in addition to its requirement for c-Myc up-regulation, the MYR1 protein is needed for the ability of Toxoplasma tachyzoites to modulate several other important host pathways, including those mediated by the dense granule effectors GRA16 and GRA24. This result, combined with its location at the parasitophorous vacuole membrane, suggested that MYR1 might be a component of the machinery that translocates Toxoplasma effectors from the parasitophorous vacuole into the host cytosol. Support for this possibility was obtained by showing that transit of GRA24 to the host nucleus is indeed MYR1-dependent. As predicted by this pleiotropic phenotype, parasites deficient in MYR1 were found to be severely attenuated in a mouse model of infection. We conclude, therefore, that MYR1 is a novel protein that plays a critical role in how Toxoplasma delivers effector proteins to the infected host cell and that this is crucial to virulence
    • …
    corecore