2,798 research outputs found

    The flavour singlet mesons in QCD

    Get PDF
    We study the flavour singlet mesons from first principles using lattice QCD. We explore the splitting between flavour singlet and non-singlet for vector and axial mesons as well as the more commonly studied cases of the scalar and pseudoscalar mesons.Comment: 12 pages, LATEX, 4 ps figure

    Spectral density analysis of time correlation functions in lattice QCD using the maximum entropy method

    Get PDF
    We study various aspects of extracting spectral information from time correlation functions of lattice QCD by means of Bayesian inference with an entropic prior, the maximum entropy method (MEM). Correlator functions of a heavy-light meson-meson system serve as a repository for lattice data with diverse statistical quality. Attention is given to spectral mass density functions, inferred from the data, and their dependence on the parameters of the MEM. We propose to employ simulated annealing, or cooling, to solve the Bayesian inference problem, and discuss practical issues of the approach.Comment: 11 pages, 30 figure files (eps), some references added and updated, requires REVTeX 4.0 and prerequisites (AMS-LaTeX 2.0, graphicx, dcolumn, bm) see http://publish.aps.org/revtex4

    Molecular Dynamics Study of Bamboo-like Carbon Nanotube Nucleation

    Full text link
    MD simulations based on an empirical potential energy surface were used to study the nucleation of bamboo-like carbon nanotubes (BCNTs). The simulations reveal that inner walls of the bamboo structure start to nucleate at the junction between the outer nanotube wall and the catalyst particle. In agreement with experimental results, the simulations show that BCNTs nucleate at higher dissolved carbon concentrations (i.e., feedstock pressures) than those where non-bamboolike carbon nanotubes are nucleated

    Minimum mass of galaxies from BEC or scalar field dark matter

    Full text link
    Many problems of cold dark matter models such as the cusp problem and the missing satellite problem can be alleviated, if galactic halo dark matter particles are ultra-light scalar particles and in Bose-Einstein condensate (BEC), thanks to a characteristic length scale of the particles. We show that this finite length scale of the dark matter can also explain the recently observed common central mass of the Milky Way satellites (107M\sim 10^7 M_\odot) independent of their luminosity, if the mass of the dark matter particle is about 1022eV10^{-22} eV.Comment: 10 pages, 1 figure, accepted in JCA

    Crystallization of the ordered vortex phase in high temperature superconductors

    Full text link
    The Landau-Khalatnikov time-dependent equation is applied to describe the crystallization process of the ordered vortex lattice in high temperature superconductors after a sudden application of a magnetic field. Dynamic coexistence of a stable ordered phase and an unstable disordered phase, with a sharp interface between them, is demonstrated. The transformation to the equilibrium ordered state proceeds by movement of this interface from the sample center toward its edge. The theoretical analysis dictates specific conditions for the creation of a propagating interface, and provides the time scale for this process.Comment: 8 pages and 3 figures; to be published in Phys. Rev. B (Rapid Communications section

    Anomalous Hopping Exponents of Ultrathin Films of Metals

    Full text link
    The temperature dependence of the resistance R(T) of ultrathin quench-condensed films of Ag, Bi, Pb and Pd has been investigated. In the most resistive films, R(T)=Roexp(To/T)^x, where x=0.75. Surprisingly, the exponent x was found to be constant for a wide range of Ro and To in all four materials, possibly implying a consistent underlying conduction mechanism. The results are discussed in terms of several different models of hopping conduction.Comment: 6 pages, 5 figure

    Magnetic field effects and magnetic anisotropy in lightly doped La_{2-x}Sr_xCuO_4

    Full text link
    The effects of the application of a magnetic field on the diagonal stripe spin-glass phase is studied in lightly doped La_{2-x}Sr_xCuO_4 (x=0.014 and 0.024). With increasing magnetic field, the magnetic elastic intensity at the diagonal incommensurate (DIC) positions (1,\pm\epsilon,0) decreases as opposed to the increase seen in superconducting samples. This diminution in intensity with increasing magnetic field originates from a spin reorientation transition, which is driven by the antisymmetric exchange term in the spin Hamiltonian. On the other hand, the transition temperature, the incommensurability, and the peak width of the diagonal incommensurate correlations are not changed with magnetic field. This result suggests that the magnetic correlations are determined primarily by the charge disproportionation and that the geometry of the diagonal incommensurate magnetism is also determined by effects, that is, stripe formation which are not purely magnetic in origin. The Dzyaloshinskii-Moriya antisymmetric exchange is nevertheless important in determining the local spin structure in the DIC stripe phase.Comment: 7 pages, 5 figures, to appear in Phys. Rev.

    Intra-molecular coupling as a mechanism for a liquid-liquid phase transition

    Get PDF
    We study a model for water with a tunable intra-molecular interaction JσJ_\sigma, using mean field theory and off-lattice Monte Carlo simulations. For all Jσ0J_\sigma\geq 0, the model displays a temperature of maximum density.For a finite intra-molecular interaction Jσ>0J_\sigma > 0,our calculations support the presence of a liquid-liquid phase transition with a possible liquid-liquid critical point for water, likely pre-empted by inevitable freezing. For J=0 the liquid-liquid critical point disappears at T=0.Comment: 8 pages, 4 figure

    Quantum Interference in Superconducting Wire Networks and Josephson Junction Arrays: Analytical Approach based on Multiple-Loop Aharonov-Bohm Feynman Path-Integrals

    Get PDF
    We investigate analytically and numerically the mean-field superconducting-normal phase boundaries of two-dimensional superconducting wire networks and Josephson junction arrays immersed in a transverse magnetic field. The geometries we consider include square, honeycomb, triangular, and kagome' lattices. Our approach is based on an analytical study of multiple-loop Aharonov-Bohm effects: the quantum interference between different electron closed paths where each one of them encloses a net magnetic flux. Specifically, we compute exactly the sums of magnetic phase factors, i.e., the lattice path integrals, on all closed lattice paths of different lengths. A very large number, e.g., up to 108110^{81} for the square lattice, exact lattice path integrals are obtained. Analytic results of these lattice path integrals then enable us to obtain the resistive transition temperature as a continuous function of the field. In particular, we can analyze measurable effects on the superconducting transition temperature, Tc(B)T_c(B), as a function of the magnetic filed BB, originating from electron trajectories over loops of various lengths. In addition to systematically deriving previously observed features, and understanding the physical origin of the dips in Tc(B)T_c(B) as a result of multiple-loop quantum interference effects, we also find novel results. In particular, we explicitly derive the self-similarity in the phase diagram of square networks. Our approach allows us to analyze the complex structure present in the phase boundaries from the viewpoint of quantum interference effects due to the electron motion on the underlying lattices.Comment: 18 PRB-type pages, plus 8 large figure

    Effects of columnar disorder on flux-lattice melting in high-temperature superconductors

    Full text link
    The effect of columnar pins on the flux-lines melting transition in high-temperature superconductors is studied using Path Integral Monte Carlo simulations. We highlight the similarities and differences in the effects of columnar disorder on the melting transition in YBa2_2Cu3_3O7δ_{7-\delta} (YBCO) and the highly anisotropic Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} (BSCCO) at magnetic fields such that the mean separation between flux-lines is smaller than the penetration length. For pure systems, a first order transition from a flux-line solid to a liquid phase is seen as the temperature is increased. When adding columnar defects to the system, the transition temperature is not affected in both materials as long as the strength of an individual columnar defect (expressed as a flux-line defect interaction) is less than a certain threshold for a given density of randomly distributed columnar pins. This threshold strength is lower for YBCO than for BSCCO. For higher strengths the transition line is shifted for both materials towards higher temperatures, and the sharp jump in energy, characteristic of a first order transition, gives way to a smoother and gradual rise of the energy, characteristic of a second order transition. Also, when columnar defects are present, the vortex solid phase is replaced by a pinned Bose glass phase and this is manifested by a marked decrease in translational order and orientational order as measured by the appropriate structure factors. For BSCCO, we report an unusual rise of the translational order and the hexatic order just before the melting transition. No such rise is observed in YBCO.Comment: 32 pages, 13 figures, revte
    corecore