22 research outputs found

    The Stamp Act Crisis in Maine: The Case of Scarborough

    Get PDF
    This article discusses the impact of the Stamp Act riots on the small town of Scarborough and it\u27s impact on the lives of the citizens of the town

    Liberty Men and Great Proprietors: The Revolutionary Settlement on the Maine Frontier, 1760-1820

    Get PDF
    Review of Liberty Men and Great Proprietors: The Revolutionary Settlement on the Maine Frontier, 1760-1820 by Alan Taylo

    The Search for Security Maine after Penobscot

    Get PDF
    The article discusses the impact of the results of the Penobscot War on the inhabitants of Maine. The British seized Bagaduce (Castine) and remained. During the rest of the war, the residents of Maine had to contend with a garrison of regular British troops and the article recounts the impact of those troops

    Letter from James S. Leamon

    Get PDF
    Typed letter from James S. Leamon of the Bates College Department of History to Charlotte Michaud.https://digitalcommons.usm.maine.edu/michaud-1974-1985/1043/thumbnail.jp

    Correspondence Between Bates College Professor James S. Leamon and Charlotte Michaud

    Get PDF
    Correspondence between Professor James S. Leamon of Bates College in Lewiston, Maine, and Charlotte Michaud.https://digitalcommons.usm.maine.edu/michaud-1974-1985/1027/thumbnail.jp

    Development of an In Vitro Compartmentalization Screen for High-Throughput Directed Evolution of [FeFe] Hydrogenases

    Get PDF
    BACKGROUND: [FeFe] hydrogenase enzymes catalyze the formation and dissociation of molecular hydrogen with the help of a complex prosthetic group composed of common elements. The development of energy conversion technologies based on these renewable catalysts has been hindered by their extreme oxygen sensitivity. Attempts to improve the enzymes by directed evolution have failed for want of a screening platform capable of throughputs high enough to adequately sample heavily mutated DNA libraries. In vitro compartmentalization (IVC) is a powerful method capable of screening for multiple-turnover enzymatic activity at very high throughputs. Recent advances have allowed [FeFe] hydrogenases to be expressed and activated in the cell-free protein synthesis reactions on which IVC is based; however, IVC is a demanding technique with which many enzymes have proven incompatible. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe an extremely high-throughput IVC screen for oxygen-tolerant [FeFe] hydrogenases. We demonstrate that the [FeFe] hydrogenase CpI can be expressed and activated within emulsion droplets, and identify a fluorogenic substrate that links activity after oxygen exposure to the generation of a fluorescent signal. We present a screening protocol in which attachment of mutant genes and the proteins they encode to the surfaces of microbeads is followed by three separate emulsion steps for amplification, expression, and evaluation of hydrogenase mutants. We show that beads displaying active hydrogenase can be isolated by fluorescence-activated cell-sorting, and we use the method to enrich such beads from a mock library. CONCLUSIONS/SIGNIFICANCE: [FeFe] hydrogenases are the most complex enzymes to be produced by cell-free protein synthesis, and the most challenging targets to which IVC has yet been applied. The technique described here is an enabling step towards the development of biocatalysts for a biological hydrogen economy

    Preclinical Evaluation of Bispecific Adaptor Molecule Controlled Folate Receptor CAR-T Cell Therapy With Special Focus on Pediatric Malignancies

    Get PDF
    Chimeric antigen receptor (CAR)-T cell therapy has transformed pediatric oncology by producing high remission rates and potent effects in CD19+ B-cell malignancies. This scenario is ideal as CD19 expression is homogeneous and human blood provides a favorable environment for CAR-T cells to thrive and destroy cancer cells (along with normal B cells). Yet, CAR-T cell therapies for solid tumors remain challenged by fewer tumor targets and poor CAR-T cell performances in a hostile tumor microenvironment. For acute myeloid leukemia and childhood solid tumors such as osteosarcoma, the primary treatment is systemic chemotherapy that often falls short of expectation especially for relapsed and refractory conditions. We aim to develop a CAR-T adaptor molecule (CAM)-based therapy that uses a bispecific small-molecule ligand EC17, fluorescein isothiocyanate (FITC) conjugated with folic acid, to redirect FITC-specific CAR-T cells against folate receptor (FR)-positive tumors. As previously confirmed in rodents as well as in human clinical studies, EC17 penetrates solid tumors within minutes and is retained due to high affinity for the FR, whereas unbound EC17 rapidly clears from the blood and from receptor-negative tissues. When combined with a rationally designed CAR construct, EC17 CAM was shown to trigger CAR-modified T cell activation and cytolytic activity with a low FR threshold against tumor targets. However, maximal cytolytic potential correlated with (i) functional FR levels (in a semi-log fashion), (ii) the amount of effector cells present, and (iii) tumors' natural sensitivity to T cell mediated killing. In tumor-bearing mice, administration of EC17 CAM was the key to drive CAR-T cell activation, proliferation, and persistence against FR+ pediatric hematologic and solid tumors. In our modeling systems, cytokine release syndrome (CRS) was induced under specific conditions, but the risk of severe CRS could be easily mitigated or prevented by applying intermittent dosing and/or dose-titration strategies for the EC17 CAM. Our approach offers the flexibility of antigen control, prevents T cell exhaustion, and provides additional safety mechanisms including rapid reversal of severe CRS with intravenous sodium fluorescein. In this paper, we summarize the translational aspects of our technology in support of clinical development
    corecore