36 research outputs found
Évènements Rares sur des Séries Temporelles Environnementales
International audienceLa mesure de l'activité de mollusques bivalves est un moyen d'enregistrer le comportement de bivalves in situ et donc d'évaluer des changements de la qualité de l'eau. Nous proposons une méthode statistique basée sur la théorie des valeurs extrêmes permettant d'estimer des changements globaux (pollution, changement de température) et ainsi d'aider à la surveillance de systèmes aquatiques
Evolution of a fungal ecosystem in a water distribution system to a positive bacterial biofilm subsequent to a treatment using essential oils
AbstractThe present study aims to demonstrate the direct link between the microbial ecosystem of drinking water distribution systems and animal health in pig breeding. Based on a survey over 18 months, a treatment using essential oils proved to be efficient in increasing piglet health and zootechnical performance. Water pipe biofilms were monitored by laser scanning confocal microscopy, while zootechnical performance and health cost data were collected from professional organisations. In two representative monitored herds, it was observed that the drinking water distribution pipes, initially fouled by fungi, were replaced by a bacterial film while both veterinary costs and the total feed conversion ratio decreased. Essential oils may thus provide an efficient and sustainable alternative to the massive use of antibiotics for transforming an initial detrimental ecosystem to a positive biofilm
Valorisation of local agro-industrial processing waters as growth media for polyhydroxyalkanoates (PHA) production
International audiencePolyhydroxyalkanoates (PHA) are bacterial polyesters usually produced from costly sugars or volatile fatty acids (VFAs). In this work, two processing waters rich in vegetable proteins and reducing sugars, i.e., a mixture of saccharose and stachyose in Leguminous Processing Water (LPW) and a mixture of glucose and fructose in Fruit Processing Water (FPW), were tested as growth medium for PHA production in a two-stage fermentation with a unique marine bacterial species: Halomonas i4786. In preliminary shake flask experiments, it was shown that the two media can effectively support the bacterial growth and the accumulation of PHA (evaluated using Nile Red staining). In batch cultivation mode in a 5-L fermentor, PHA productivities of 1.6 g L−1 and 1.8 g L−1 were further achieved within 72 h, in LPW and FPW respectively. Polymer characterization by Differential Scanning Calorimetry and Steric Exclusion Chromatography indicated that the two substrates led to the biosynthesis of polymers with different chain length, distribution and crystallinity. To summarize, these results show that by-products derived from local agri-food industry can be used as a user-adapted and cost-effective source to produce bio-sourced and biodegradable plastic material
Nat Genet
The function of the majority of genes in the mouse and human genomes remains unknown. The mouse embryonic stem cell knockout resource provides a basis for the characterization of relationships between genes and phenotypes. The EUMODIC consortium developed and validated robust methodologies for the broad-based phenotyping of knockouts through a pipeline comprising 20 disease-oriented platforms. We developed new statistical methods for pipeline design and data analysis aimed at detecting reproducible phenotypes with high power. We acquired phenotype data from 449 mutant alleles, representing 320 unique genes, of which half had no previous functional annotation. We captured data from over 27,000 mice, finding that 83% of the mutant lines are phenodeviant, with 65% demonstrating pleiotropy. Surprisingly, we found significant differences in phenotype annotation according to zygosity. New phenotypes were uncovered for many genes with previously unknown function, providing a powerful basis for hypothesis generation and further investigation in diverse systems.Comment in : Genetic differential calculus. [Nat Genet. 2015]
Comment in : Scaling up phenotyping studies. [Nat Biotechnol. 2015
XANES spectroscopy sensitivity to small electronic changes Case of carp azidomethemoglobin
AbstractSpin states equilibrium of hemoglobin-iron varies with external conditions: pH, allosteric effectors, temperature. The small electronic reorganization of the iron caused by the spin state changes has been detected by X-ray absorption near edge structure (XANES) spectroscopy at room temperature. The iron K-edge region which is sensitive to spin state is located in 7110–7130 eV. Here are presented the 100% high spin and 100% low spin XANES spectra of carp azido ferric hemoglobin
Study of the effect of environmental and biological perturbations on the behavior of bivalves
International audienc
Efficient microplastics extraction from sand. A cost effective methodology based on sodium iodide recycling
International audienceEvaluating the microplastics pollution on the shores requires overcoming the technological and economical challenge of efficient plastic extraction from sand. The recovery of dense microplastics requires the use of NaI solutions, a costly process. The aim of this study is to decrease this cost by recycling the NaI solutions and to determine the impact of NaI storage. For studying the NaI recyclability, the solution density and the salt mass have been monitored during ten life cycles. Density, pH and salt mass have been measured for 40 days to assess the storage effect. The results show that NaI solutions are recyclable without any density alterations with a total loss of 35.9% after the 10 cycles of use. During storage, chemical reactions may appear but are reversible. Consequently, the use of recycling methods allows for a significant cost reduction. How far the plastic extraction by dense solutions is representative is discussed. (C) 2016 Elsevier Ltd. All rights reserved
Investigating the<em> in Vitro</em> Thermal Stability and Conformational Flexibility of Estrogen Receptors as Potential Key Factors of Their <em>in Vivo</em> Activity.
International audienceAmong hormone-inducible transcription factors, estrogen receptors (ERs) play important roles in tissue growth and differentiation, via either direct or indirect binding, in the nucleus, to specific DNA targets called estrogen responsive elements (EREs), or through nongenomic pathways. In humans, two estrogen receptor isoforms (hERs), designated hERα and hERβ, have been identified. These two hERs, encoded by genes located on distinct chromosomes, exhibit divergent tissue-specific functions and different subcellular distributions depending on their binding status, free or complexed to their cognate ligands. Because it is hypothesized that such distinct behaviors may arise from various conformational stabilities and flexibilities, the effect of salt concentration and temperature was studied on the free and estrogen-activated hERα and hERβ. Our results show that the conformational stability of hERβ is weakly modulated by salt concentration as opposed to hERα. In addition, we show that the estrogen-bound hERs exhibit a more constrained structure than the unliganded ones and that their conformational flexibility is more affected by diethylstilbestrol binding than that of estradiol, 4-hydroxytamoxifen, or raloxifen. In line with these results, conformational analysis and computational docking were performed on hERα and hERβ, which confer molecular support of a diethylstilbestrol-induced restrained flexibility as compared to other ligands. We found that Trp383 in hERα and Trp335 in hERβ can closely interact with the NR-box motif of the H12 helix and act as a gatekeeper of the agonist-bound versus antagonist-bound conformations. Altogether, our study contributes to an improved knowledge of the diverse physicochemical properties of full-length hERs, which will help in our understanding of their distinct cellular roles in various cellular contexts