1,623 research outputs found

    Perceived spatial organization of cutaneous patterns on surfaces of the human body in various positions.

    Get PDF

    Music and language side by side in the brain: a PET study of the generation of melodies and sentences

    Get PDF
    Abstract Parallel generational tasks for music and language were compared using positron emission tomography. Amateur musicians vocally improvised melodic or linguistic phrases in response to unfamiliar, auditorily presented melodies or phrases. Core areas for generating melodic phrases appeared to be in left Brodmann area (BA) 45, right BA 44, bilateral temporal planum polare, lateral BA 6, and pre-SMA. Core areas for generating sentences seemed to be in bilateral posterior superior and middle temporal cortex (BA 22, 21), left BA 39, bilateral superior frontal (BA 8, 9), left inferior frontal (BA 44, 45), anterior cingulate, and pre-SMA. Direct comparisons of the two tasks revealed activations in nearly identical functional brain areas, including the primary motor cortex, supplementary motor area, Broca's area, anterior insula, primary and secondary auditory cortices, temporal pole, basal ganglia, ventral thalamus, and posterior cerebellum. Most of the differences between melodic and sentential generation were seen in lateralization tendencies, with the language task favouring the left hemisphere. However, many of the activations for each modality were bilateral, and so there was significant overlap. While clarification of this overlapping activity awaits higher-resolution measurements and interventional assessments, plausible accounts for it include component sharing, interleaved representations, and adaptive coding. With these and related findings, we outline a comparative model of shared, parallel, and distinctive features of the neural systems supporting music and language. The model assumes that music and language show parallel combinatoric generativity for complex sound structures (phonology) but distinctly different informational content (semantics)

    The human red nucleus and lateral cerebellum in supporting roles for sensory information processing

    Get PDF
    A functional MRI study compared activation in the red nucleus to that in the lateral cerebellar dentate nucleus during passive and active tactile discrimination tasks. The study pursued recent neuroimaging results suggesting that the cerebellum may be more associated with sensory processing than with the control of movement for its own sake. Because the red nucleus interacts closely with the cerebellum, the possibility was examined that activity in red nucleus might also be driven by the requirement for tactile sensory processing with the fingers rather than by finger movement alone. The red and dentate nuclei were about 300% more active (a combination of activation areas and intensities) during passive (non‐motor) tactile stimulation when discrimination was required than when it was not. Thus, the red nucleus was activated by purely sensory stimuli even in the absence of the opportunity to coordinate finger movements or to use the sensory cues to guide movement. The red and dentate nuclei were about 70% more active during active tactile tasks when discrimination was required than when it was not (i.e., for simple finger movements alone). Thus, the red nucleus was most active when the fingers were being used for tactile sensory discrimination. In both the passive and active tactile tasks, the observed activation had a contralateralized pattern, with stronger activation in the left red nucleus and right dentate nucleus. Significant covariation was observed between activity in the red nucleus and the contralateral dentate during the discrimination tasks and no significant correlation between the red nucleus and the contralateral dentate activity was detected during the two non‐discrimination tasks. The observed interregional covariance and contralateralized activation patterns suggest strong functional connectivity during tactile discrimination tasks. Overall, the pattern of findings suggests that the activity in the red nucleus, as in the lateral cerebellum, is more driven by the requirements for sensory processing than by motor coordination per se

    Mitigating alemtuzumab-associated autoimmunity in MS: A whack-a-mole B-cell depletion strategy

    Get PDF
    Objective: To determine whether the punctuated administration of low-dose rituximab, temporally linked to B-cell hyperrepopulation (defined when the return of CD19+ B cells approximates 40%-50% of baseline levels as measured before alemtuzumab treatment inception), can mitigate alemtuzumab-associated secondary autoimmunity. Methods: In this hypothesis-driven pilot study, 10 patients received low-dose rituximab (50-150 mg/m2), a chimeric anti-CD20 monoclonal antibody, after either their first or second cycles of alemtuzumab. These patients were then routinely assessed for the development of autoimmune disorders and safety signals related to the use of dual monoclonal antibody therapy. Results: Five patients received at least 1 IV infusion of low-dose rituximab, following alemtuzumab therapy, with a mean follow-up of 41 months. None of the 5 patients developed secondary autoimmune disorders. An additional 5 patients with follow-up over less than 24 months received at least 1 infusion of low-dose rituximab treatment following alemtuzumab treatment. No secondary autoimmune diseases were observed. Conclusions: An anti-CD20 whack-a-mole B-cell depletion strategy may serve to mitigate alemtuzumab-associated secondary autoimmunity in MS by reducing the imbalance in B- and T-cell regulatory networks during immune reconstitution. We believe that these observations warrant further investigation. Classification of evidence: This study provides Class IV evidence that for people with MS, low-dose rituximab following alemtuzumab treatment decreases the risk of alemtuzumab-associated secondary autoimmune diseases

    FAD binding, cobinamide binding and active site communication in the corrin reductase (CobR)

    Get PDF
    Adenosylcobalamin, the coenzyme form of vitamin B12, is one Nature's most complex coenzyme whose de novo biogenesis proceeds along either an anaerobic or aerobic metabolic pathway. The aerobic synthesis involves reduction of the centrally chelated cobalt metal ion of the corrin ring from Co(II) to Co(I) before adenosylation can take place. A corrin reductase (CobR) enzyme has been identified as the likely agent to catalyse this reduction of the metal ion. Herein, we reveal how Brucella melitensis CobR binds its coenzyme FAD (flavin dinucleotide) and we also show that the enzyme can bind a corrin substrate consistent with its role in reduction of the cobalt of the corrin ring. Stopped-flow kinetics and EPR reveal a mechanistic asymmetry in CobR dimer that provides a potential link between the two electron reduction by NADH to the single electron reduction of Co(II) to Co(I)

    The human papillomavirus E7 proteins associate with p190RhoGAP and alter its function

    Get PDF
    Using mass spectrometry, we identified p190RhoGAP (p190) as a binding partner of human papillomavirus 16 (HPV16) E7. p190 belongs to the GTPase activating protein (GAP) family and is one of the primary GAPs for RhoA. GAPs stimulate the intrinsic GTPase activity of the Rho proteins, leading to Rho inactivation and influencing numerous biological processes. RhoA is one of the best-characterized Rho proteins and is specifically involved in formation of focal adhesions and stress fibers, thereby regulating cell migration and cell spreading. Since this is the first report that E7 associates with p190, we carried out detailed interaction studies. We show that E7 proteins from other HPV types also bind p190. Furthermore, we found that conserved region 3 (CR3) of E7 and the middle domain of p190 are important for this interaction. More specifically, we identified two residues in CR3 of E7 that are necessary for p190 binding and used mutants of E7 with mutations of these residues to determine the biological consequences of the E7-p190 interaction. Our data suggest that the interaction of E7 with p190 dysregulates this GAP and alters the actin cytoskeleton. We also found that this interaction negatively regulates cell spreading on a fibronectin substrate and therefore likely contributes to important aspects of the HPV life cycle or HPV-induced tumorigenesis. © 2014, American Society for Microbiology

    Pioglitazone for secondary prevention after ischemic stroke and transient ischemic attack: Rationale and design of the Insulin Resistance Intervention after Stroke Trial

    Get PDF
    Background: Recurrent vascular events remain a major source of morbidity and mortality after stroke or transient ischemic attack (TIA). The IRIS Trial is evaluating an approach to secondary prevention based on the established association between insulin resistance and increased risk for ischemic vascular events. Specifically, IRIS will test the effectiveness of pioglitazone, an insulin-sensitizing drug of the thiazolidinedione class, for reducing the risk for stroke and myocardial infarction (MI) among insulin resistant, nondiabetic patients with a recent ischemic stroke or TIA. Design: Eligible patients for IRIS must have had insulin resistance defined by a Homeostasis Model Assessment-Insulin Resistance \u3e3.0 without meeting criteria for diabetes. Within 6 months of the index stroke or TIA, patients were randomly assigned to pioglitazone (titrated from 15 to 45 mg/d) or matching placebo and followed for up to 5 years. The primary outcome is time to stroke or MI. Secondary outcomes include time to stroke alone, acute coronary syndrome, diabetes, cognitive decline, and all-cause mortality. Enrollment of 3,876 participants from 179 sites in 7 countries was completed in January 2013. Participant follow-up will continue until July 2015. Summary: The IRIS Trial will determine whether treatment with pioglitazone improves cardiovascular outcomes of nondiabetic, insulin-resistant patients with stroke or TIA. Results are expected in early 2016
    • 

    corecore