60 research outputs found

    Perceived Object Stability Depends on Multisensory Estimates of Gravity

    Get PDF
    BACKGROUND: How does the brain estimate object stability? Objects fall over when the gravity-projected centre-of-mass lies outside the point or area of support. To estimate an object's stability visually, the brain must integrate information across the shape and compare its orientation to gravity. When observers lie on their sides, gravity is perceived as tilted toward body orientation, consistent with a representation of gravity derived from multisensory information. We exploited this to test whether vestibular and kinesthetic information affect this visual task or whether the brain estimates object stability solely from visual information. METHODOLOGY/PRINCIPAL FINDINGS: In three body orientations, participants viewed images of objects close to a table edge. We measured the critical angle at which each object appeared equally likely to fall over or right itself. Perceived gravity was measured using the subjective visual vertical. The results show that the perceived critical angle was significantly biased in the same direction as the subjective visual vertical (i.e., towards the multisensory estimate of gravity). CONCLUSIONS/SIGNIFICANCE: Our results rule out a general explanation that the brain depends solely on visual heuristics and assumptions about object stability. Instead, they suggest that multisensory estimates of gravity govern the perceived stability of objects, resulting in objects appearing more stable than they are when the head is tilted in the same direction in which they fall

    Variation analysis and gene annotation of eight MHC haplotypes: The MHC Haplotype Project

    Get PDF
    The human major histocompatibility complex (MHC) is contained within about 4 Mb on the short arm of chromosome 6 and is recognised as the most variable region in the human genome. The primary aim of the MHC Haplotype Project was to provide a comprehensively annotated reference sequence of a single, human leukocyte antigen-homozygous MHC haplotype and to use it as a basis against which variations could be assessed from seven other similarly homozygous cell lines, representative of the most common MHC haplotypes in the European population. Comparison of the haplotype sequences, including four haplotypes not previously analysed, resulted in the identification of >44,000 variations, both substitutions and indels (insertions and deletions), which have been submitted to the dbSNP database. The gene annotation uncovered haplotype-specific differences and confirmed the presence of more than 300 loci, including over 160 protein-coding genes. Combined analysis of the variation and annotation datasets revealed 122 gene loci with coding substitutions of which 97 were non-synonymous. The haplotype (A3-B7-DR15; PGF cell line) designated as the new MHC reference sequence, has been incorporated into the human genome assembly (NCBI35 and subsequent builds), and constitutes the largest single-haplotype sequence of the human genome to date. The extensive variation and annotation data derived from the analysis of seven further haplotypes have been made publicly available and provide a framework and resource for future association studies of all MHC-associated diseases and transplant medicine

    Integrins as therapeutic targets: lessons and opportunities.

    Get PDF
    The integrins are a large family of cell adhesion molecules that are essential for the regulation of cell growth and function. The identification of key roles for integrins in a diverse range of diseases, including cancer, infection, thrombosis and autoimmune disorders, has revealed their substantial potential as therapeutic targets. However, so far, pharmacological inhibitors for only three integrins have received marketing approval. This article discusses the structure and function of integrins, their roles in disease and the chequered history of the approved integrin antagonists. Recent advances in the understanding of integrin function, ligand interaction and signalling pathways suggest novel strategies for inhibiting integrin function that could help harness their full potential as therapeutic targets

    Molecular characterization of MHC class IIB genes of sympatric Neotropical cichlids

    Get PDF
    Ministerio de Economía y Competitividad del Gobierno de España, Programa de Formación de Personal Investigador FPI BES-2011-047645 to MJH, Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia Proyecto CGL 2010-16103 to MB. This project was further enabled through two German Science Foundation grants to CE (DFG, EI841/4-1 and EI841/6-1) both part of the SPP 1399 priority programme on “host-parasite interactions”

    Electrochemical behavior of zinc layer anodes used for galvanic protection of steel in reinforced concrete

    No full text
    Steel corrosion is the most common reason for the premature deterioration of reinforced concrete structures. Consequently, cathodic protection of steel in concrete has been substantially developed during the past two decades. In particular, galvanic protection consists in generating a natural macrocell corrosion system in which a sacrificial metallic anode (zinc, typically) is involved to apply a cathodic polarization to the corroding steel layout, in order to mitigate or annihilate the corrosion kinetics. Whether the general principle of cathodic protection is not questionable, the global design process can be significantly improved by increasing the knowledge on electrochemical behaviours of the different components of the protecting system. Regarding zinc anodes in concrete, the literature is very scarce. The time evolution of such systems is also not rigorously addressed, aging effects are systematically ignored and zinc anodes are usually considered as non-polarizable and inert over time. In this paper, the polarization response of a zinc layer anode (ZLA) in concrete electrolyte and its time evolution are studied. The results show a rapid evolution of the ZLA behavior, once the protecting system is connected to steel reinforcements. Moreover, the characterization of ZLA provided relevant electrochemical properties for the numerical design of galvanic protection systems

    TINGKAT RESURJENSI WERENG BATANG PADI COKELAT PADA BERBAGAI VARIETAS PADI SETELAH APLIKASI DELTAMETRIN

    No full text
    Nilaparvata lugens (the rice brown planthopper) is a major insect pest on rice, and deltamethrin is, in fact, currently used for controlling rice pests other than N. lugens. The objective of this research was to determine the side effect of deltamethrin, parculticularly on the adult mortality, fecundity, and viability of eggs. The experiments were arranged in a 2x3 factorial design. Fifhteen pairs of newly emerged adults (<24 h) were exposed on three rice varieties (IR-64: resistan
    • …
    corecore