4,145 research outputs found

    Eye-Light on Age-Related Macular Degeneration: Targeting Nrf2-Pathway as a Novel Therapeutic Strategy for Retinal Pigment Epithelium

    Get PDF
    open6noThis work was supported by the University of Pavia [to MA, grant number BSR1744747; 2017] and the Italian Ministry of University and Research [to MA, FFABR2017]. The University of Bologna is acknowledged by MR [Grants from RFO].Age-related macular degeneration (AMD) is a common disease with a multifactorial aetiology, still lacking effective and curative therapies. Among the early events triggering AMD is the deterioration of the retinal pigment epithelium (RPE), whose fundamental functions assure good health of the retina. RPE is physiologically exposed to high levels of oxidative stress during its lifespan; thus, the integrity and well-functioning of its antioxidant systems are crucial to maintain RPE homeostasis. Among these defensive systems, the Nrf2-pathway plays a primary role. Literature evidence suggests that, in aged and especially in AMD RPE, there is an imbalance between the increased pro-oxidant stress, and the impaired endogenous detoxifying systems, finally reverberating on RPE functions and survival. In this in vitro study on wild type (WT) and Nrf2-silenced (siNrf2) ARPE-19 cells exposed to various AMD-related noxae (H2O2, 4-HNE, MG132 + Bafilomycin), we show that the Nrf2-pathway activation is a physiological protective stress response, leading downstream to an up-regulation of the Nrf2-targets HO1 and p62, and that a Nrf2 impairment predisposes the cells to a higher vulnerability to stress. In search of new pharmacologically active compounds potentially useful for AMD, four nature-inspired hybrids (NIH) were individually characterized as Nrf2 activators, and their pharmacological activity was investigated in ARPE-19 cells. The Nrf2 activator dimethyl-fumarate (DMF; 10 ÎĽM) was used as a positive control. Three out of the four tested NIH (5 ÎĽM) display both direct and indirect antioxidant properties, in addition to cytoprotective effects in ARPE-19 cells under pro-oxidant stimuli. The observed pro-survival effects require the presence of Nrf2, with the exception of the lead compound NIH1, able to exert a still significant, albeit lower, protection even in siNrf2 cells, supporting the concept of the existence of both Nrf2-dependent and independent pathways mediating pro-survival effects. In conclusion, by using some pharmacological tools as well as a reference compound, we dissected the role of the Nrf2-pathway in ARPE-19 stress response, suggesting that the Nrf2 induction represents an efficient defensive strategy to prevent the stress-induced damage.openCatanzaro M.; Lanni C.; Basagni F.; Rosini M.; Govoni S.; Amadio M.Catanzaro M.; Lanni C.; Basagni F.; Rosini M.; Govoni S.; Amadio M

    Both 3,3′,5-triiodothyronine and 3,5-diodo-L-thyronine are able to repair mitochondrial DNA damage but by different mechanisms

    Get PDF
    This study evaluated the effect of 3,5-diiodo-L-thyronine (T2) and 3,5,3′-triiodo-L-thyronine (T3) on rat liver mitochondrial DNA (mtDNA) oxidative damage and repair and to investigate their ability to induce protective effects against oxidative stress. Control rats, rats receiving a daily injection of T2 (N+T2) for 1 week and rats receiving a daily injection of T3 (N+T3) for 1 week, were used throughout the study. In the liver, mtDNA oxidative damage [by measuring mtDNA lesion frequency and expression of DNA polymerase γ (POLG)], mtDNA copy number, mitochondrial biogenesis [by measuring amplification of mtDNA/nDNA and expression of peroxisome proliferator-activated receptor gamma co-activator 1-alpha (PGC-1α)], and oxidative stress [by measuring serum levels of 8-hydroxy-2′-deoxyguanosine (8-OHdG)] were detected. T2 reduces mtDNA lesion frequency and increases the expression of POLG, and it does not change the mtDNA copy number, the expression of PGC-1α, or the serum levels of 8-OHdG. Therefore, T2, by stimulating the major mtDNA repair enzyme, maintains genomic integrity. Similar to T2, T3 decreases mtDNA lesion frequency but increases the serum levels of 8-OHdG, and it decreases the expression of POLG. Moreover, as expected, T3 increases the mtDNA copy number and the expression of PGC-1α. Thus, in T3-treated rats, the increase of 8-OHdG and the decrease of POLG indicate that there is increased oxidative damage and that the decreased mtDNA lesion frequency might be a consequence of increased mitochondrial biogenesis. These data demonstrate that both T2 and T3 are able to decrease in the liver mtDNA oxidative damage, but they act via different mechanisms

    3,5-Diiodo-L-thyronine modulates the expression of genes of lipid metabolism in a rat model of fatty liver.

    Get PDF
    Recent reports demonstrated that 3,5-diiodo-l-thyronine (T(2)) was able to prevent lipid accumulation in the liver of rats fed a high-fat diet (HFD). In this study, we investigated how the rat liver responds to HFD and T(2) treatment by assessing the transcription profiles of some genes involved in the pathways of lipid metabolism: oxidation, storage and secretion. The mRNA levels of the peroxisome proliferator-activated receptors (PPARα, PPARγ and PPARδ), and of their target enzymes acyl-CoA oxidase and stearoyl-CoA desaturase were evaluated by real-time RT-PCR. Moreover, the expression of the adipose triglyceride lipase involved in lipid mobilisation, of the main PAT proteins acting in lipid droplet (LD) turnover, and of apoprotein B (apo B), the major protein component of very low-density lipoproteins (VLDLs) were analysed. Overall, our data demonstrated that T(2) administration to HFD rats counteracts most of the hepatic transcriptional changes that occurred in response to the excess exogenous fat. In particular, our results suggest that T(2) may prevent the pathways leading to lipid storage in LDs, promote the processes of lipid mobilisation from LDs and secretion as VLDL, in addition to the stimulation of pathways of lipid oxidation. In conclusion, our findings might give an insight into the mechanisms underlying the anti-steatotic ability of T(2) and help to define the potential therapeutic role of T(2) for preventing or treating liver steatosis

    Altered Mitochondrial Quality Control in Rats with Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD) Induced by High-Fat Feeding

    Get PDF
    Metabolic dysfunction-associated fatty liver disease (MAFLD) is defined as the presence of hepatic steatosis in addition to one of three metabolic conditions: overweight/obesity, type 2 diabetes mellitus, or metabolic dysregulation. Chronic exposure to excess dietary fatty acids may cause hepatic steatosis and metabolic disturbances. The alteration of the quality of mitochondria is one of the factors that could contribute to the metabolic dysregulation of MAFDL. This study was designed to determine, in a rodent model of MAFLD, the effects of a long-term high-fat diet (HFD) on some hepatic processes that characterize mitochondrial quality control, such as biogenesis, dynamics, and mitophagy. To mimic the human manifestation of MAFLD, the rats were exposed to both an HFD and a housing temperature within the rat thermoneutral zone (28–30◦C). After 14 weeks of the HFD, the rats showed significant fat deposition and liver steatosis. Concomitantly, some important factors related to the hepatic mitochondrial quality were markedly affected, such as increased mitochondrial reactive oxygen species (ROS) production and mitochondrial DNA (mtDNA) damage; reduced mitochondrial biogenesis, mtDNA copy numbers, mtDNA repair, and mitochondrial fusion. HFD-fed rats also showed an impaired mitophagy. Overall, the obtained data shed new light on the network of different processes contributing to the failure of mitochondrial quality control as a central event for mitochondrial dysregulation in MAFLD

    Progress on DC-DC Converters for a Silicon Tracker for the sLHC Upgrade

    Get PDF
    There is a need for DC-DC converters which can operate in the extremely harsh environment of the sLHC Si Tracker. The environment requires radiation qualification to a total ionizing radiation dose of 50 Mrad and a displacement damage fluence of 5 x 1014 /cm2 of 1 MeV equivalent neutrons. In addition a static magnetic field of 2 Tesla or greater prevents the use of any magnetic components or materials. In February 2007 an Enpirion EN5360 was qualified for the sLHC radiation dosage but the converter has an input voltage limited to a maximum of 5.5V. From a systems point of view this input voltage was not sufficient for the application. Commercial LDMOS FETs have developed using a 0.25 ÎĽm process which provided a 12 volt input and were still radiation hard. These results are reported here and in previous papers. Plug in power cards with Ă—10 voltage ratio are being developed for testing the hybrids with ABCN chips. These plug-in cards have air coils but use commercial chips that are not designed to be radiation hard. This development helps in evaluating system noise and performance. GaN FETs are tested for radiation hardness to ionizing radiation and displacement damage and preliminary results are given

    Development of a modular test system for the silicon sensor R&D of the ATLAS Upgrade

    Get PDF
    High Voltage CMOS sensors are a promising technology for tracking detectors in collider experiments. Extensive R&D studies are being carried out by the ATLAS Collaboration for a possible use of HV-CMOS in the High Luminosity LHC upgrade of the Inner Tracker detector. CaRIBOu (Control and Readout Itk BOard) is a modular test system developed to test Silicon based detectors. It currently includes five custom designed boards, a Xilinx ZC706 development board, FELIX (Front-End LInk eXchange) PCIe card and a host computer. A software program has been developed in Python to control the CaRIBOu hardware. CaRIBOu has been used in the testbeam of the HV-CMOS sensor AMS180v4 at CERN. Preliminary results have shown that the test system is very versatile. Further development is ongoing to adapt to different sensors, and to make it available to various lab test stands

    Alzheimer's disease: new diagnostic and therapeutic tools

    Get PDF
    On March 19, 2008 a Symposium on Pathophysiology of Ageing and Age-Related diseases was held in Palermo, Italy. Here, the lectures of M. Racchi on History and future perspectives of Alzheimer Biomarkers and of G. Scapagnini on Cellular Stress Response and Brain Ageing are summarized. Alzheimer's disease (AD) is a heterogeneous and progressive neurodegenerative disease, which in Western society mainly accounts for clinica dementia. AD prevention is an important goal of ongoing research. Two objectives must be accomplished to make prevention feasible: i) individuals at high risk of AD need to be identified before the earliest symptoms become evident, by which time extensive neurodegeneration has already occurred and intervention to prevent the disease is likely to be less successful and ii) safe and effective interventions need to be developed that lead to a decrease in expression of this pathology. On the whole, data here reviewed strongly suggest that the measurement of conformationally altered p53 in blood cells has a high ability to discriminate AD cases from normal ageing, Parkinson's disease and other dementias. On the other hand, available data on the involvement of curcumin in restoring cellular homeostasis and rebalancing redox equilibrium, suggest that curcumin might be a useful adjunct in the treatment of neurodegenerative illnesses characterized by inflammation, such as AD
    • …
    corecore