984 research outputs found

    Adaptation to the Edge of Chaos in the Self-Adjusting Logistic Map

    Full text link
    Self-adjusting, or adaptive systems have gathered much recent interest. We present a model for self-adjusting systems which treats the control parameters of the system as slowly varying, rather than constant. The dynamics of these parameters is governed by a low-pass filtered feedback from the dynamical variables of the system. We apply this model to the logistic map and examine the behavior of the control parameter. We find that the parameter leaves the chaotic regime. We observe a high probability of finding the parameter at the boundary between periodicity and chaos. We therefore find that this system exhibits adaptation to the edge of chaos.Comment: 3 figure

    Effect of Chaotic Noise on Multistable Systems

    Get PDF
    In a recent letter [Phys.Rev.Lett. {\bf 30}, 3269 (1995), chao-dyn/9510011], we reported that a macroscopic chaotic determinism emerges in a multistable system: the unidirectional motion of a dissipative particle subject to an apparently symmetric chaotic noise occurs even if the particle is in a spatially symmetric potential. In this paper, we study the global dynamics of a dissipative particle by investigating the barrier crossing probability of the particle between two basins of the multistable potential. We derive analytically an expression of the barrier crossing probability of the particle subject to a chaotic noise generated by a general piecewise linear map. We also show that the obtained analytical barrier crossing probability is applicable to a chaotic noise generated not only by a piecewise linear map with a uniform invariant density but also by a non-piecewise linear map with non-uniform invariant density. We claim, from the viewpoint of the noise induced motion in a multistable system, that chaotic noise is a first realization of the effect of {\em dynamical asymmetry} of general noise which induces the symmetry breaking dynamics.Comment: 14 pages, 9 figures, to appear in Phys.Rev.

    Illocutionary harm

    Get PDF
    A number of philosophers have become interested in the ways that individuals are subject to harm as the performers of illocutionary acts. This paper offers an account of the underlying structure of such harms: I argue that speakers are the subjects of illocutionary harm when there is interference in the entitlement structure of their linguistic activities. This interference comes in two forms: denial and incapacitation. In cases of denial, a speaker is prevented from achieving the outcomes to which they are entitled by their speech. In cases of incapacitation, a speaker’s standing to expect certain outcomes is itself undermined. I also discuss how individual speakers are subject to interference along two dimensions: as exercisers of certain non-linguistic capacities, and as producers of meaningful speech

    Quality-of-life issues and symptoms reported by patients living with haematological malignancy: a qualitative study

    Get PDF
    Background: Our aim was to identify health-related quality-of-life (HRQoL) issues and symptoms in patients with haematological malignancies (HMs) and develop a conceptual framework to reflect the inter-relation between them. / Methods: A total of 129 patients with HMs were interviewed in a UK multicentre qualitative study. All interviews were audio recorded, transcribed and analysed using NVivo-11. / Results: Overall, 34 issues were reported by patients and were grouped into two parts: quality of life (QoL) and symptoms. The most prevalent HRQoL issues were: eating and drinking habits; social life; physical activity; sleep; and psychological well-being. Furthermore, most prevalent disease-related symptoms were: tiredness; feeling unwell; breathlessness; lack of energy; and back pain. The most prevalent treatment side effects were: tiredness; feeling sick; disturbance in sense of taste; and breathlessness. / Conclusions: Both HMs and their treatments have a significant impact on patients’ HRQoL, in particular on issues such as job-role change, body image and impact on finances

    Three-dimensional atmospheric circulation of hot Jupiters on highly eccentric orbits

    Full text link
    Of the over 800 exoplanets detected to date, over half are on non-circular orbits, with eccentricities as high as 0.93. Such orbits lead to time-variable stellar heating, which has implications for the planet's atmospheric dynamical regime. However, little is known about this dynamical regime, and how it may influence observations. Therefore, we present a systematic study of hot Jupiters on highly eccentric orbits using the SPARC/MITgcm, a model which couples a three-dimensional general circulation model with a plane-parallel, two-stream, non-grey radiative transfer model. In our study, we vary the eccentricity and orbit-average stellar flux over a wide range. We demonstrate that the eccentric hot Jupiter regime is qualitatively similar to that of planets on circular orbits; the planets possess a superrotating equatorial jet and exhibit large day-night temperature variations. We show that these day-night heating variations induce momentum fluxes equatorward to maintain the superrotating jet throughout its orbit. As the eccentricity and/or stellar flux is increased, the superrotating jet strengthens and narrows, due to a smaller Rossby deformation radius. For a select number of model integrations, we generate full-orbit lightcurves and find that the timing of transit and secondary eclipse viewed from Earth with respect to periapse and apoapse can greatly affect what we see in infrared (IR) lightcurves; the peak in IR flux can lead or lag secondary eclipse depending on the geometry. For those planets that have large day-night temperature variations and rapid rotation rates, we find that the lightcurves exhibit "ringing" as the planet's hottest region rotates in and out of view from Earth. These results can be used to explain future observations of eccentric transiting exoplanets.Comment: 20 pages, 18 figures, 2 tables; Accepted to Ap

    Opposing offspring sex ratio variations with increasing age and weight in mouflon mothers (Ovis musimon)

    Get PDF
    There are two main theories explaining offspring sex biases in polygynous mammals. Trivers and Willard (1973) argue that mothers with greater reproductive resources should invest in the sex with the greater variance in reproductive success, usually sons. In contrast, because daughters in many polygynous mammals stay with their mother and compete with her for food, Local Resource Competition theory (e.g. Clark, 1978; Silk, 1983) predicts that the mothers with the greatest reproductive resources should invest in daughters. We investigated the strategy of sex allocation of a captive, outdoor population of 139 mouflon mothers, Ovis musimon, kept in a game state. A complex picture emerged in which, despite weight and body condition being correlated with age in female mouflons, mothers lambed more daughters with increasing age but also, within a given age, gave birth to more sons with increasing weight. Results may be useful in game management aimed at increasing the recruitment or quality o f males in managed populations

    Development of a Novel Hematological Malignancy Specific Patient-Reported Outcome Measure (HM-PRO) : Content Validity

    Get PDF
    Copyright © 2020 Goswami, Oliva, Ionova, Else, Kell, Fielding, Jennings, Karakantza, Al-Ismail, Collins, McConnell, Langton and Salek.Background: The quality of life of patients at all stages of hematological malignancy is greatly affected by the disease and its treatment. There is a wide range of health-related quality of life (HRQoL) issues important to these patients. Any new instrument developed to measure HRQoL of such patients should be content valid, i.e., the items should be comprehensively relevant to the patients and their health condition. The aim of the present study was to examine content validity of a hematological malignancy specific patient reported outcome measure (HM-PRO) developed for use in routine clinical practice. Methods: Following literature review and semi-structured interviews, the generated themes and sub-themes were discussed to develop the prototype version of the HM-PRO. A 4-step approach was used for content validation: initial testing and cognitive interviewing; item rating; content validity panel meeting; final field testing and cognitive interviewing. Additional questions related to patients' perception of recall period and preferred sentence structure (i.e., question or statement) of the items were also asked during cognitive interviews. Results: The content analysis of 129 transcribed semi-structured interviews resulted in the prototype version of the instrument consisting of 58 items grouped into two parts: Part A (impact/HRQoL - 34 items) and Part B (signs and symptoms - 24 items). The initial testing showed intra-class correlation coefficient (ICC) of >0.8 for both Part A and Part B. Item rating for language clarity, completeness, relevance, and response scale by experts and patients showed content validity index for scales average >0.8 for both Part A and Part B, except 0.64 for relevance for Part A by the patient panel. The final testing of the revised version of the instrument showed the Cronbach's alpha value of 0.91 for Part A and 0.76 for Part B, suggesting high internal consistency, and ICC of 0.91 for Part A and 0.76 for Part B. The recall period of "today" for Part-A and "last 3 days" for Part-B were the patients' preferred "recall period." Furthermore, the patients expressed preference to the HM-PRO items as statements. Conclusion: The findings of this study confirm that the HM-PRO possesses a strong content validity, includes all the issues important to patients and is easy to read, understand and respond to spontaneously.Peer reviewedFinal Published versio

    Avalanches in self-organized critical neural networks: A minimal model for the neural SOC universality class

    Full text link
    The brain keeps its overall dynamics in a corridor of intermediate activity and it has been a long standing question what possible mechanism could achieve this task. Mechanisms from the field of statistical physics have long been suggesting that this homeostasis of brain activity could occur even without a central regulator, via self-organization on the level of neurons and their interactions, alone. Such physical mechanisms from the class of self-organized criticality exhibit characteristic dynamical signatures, similar to seismic activity related to earthquakes. Measurements of cortex rest activity showed first signs of dynamical signatures potentially pointing to self-organized critical dynamics in the brain. Indeed, recent more accurate measurements allowed for a detailed comparison with scaling theory of non-equilibrium critical phenomena, proving the existence of criticality in cortex dynamics. We here compare this new evaluation of cortex activity data to the predictions of the earliest physics spin model of self-organized critical neural networks. We find that the model matches with the recent experimental data and its interpretation in terms of dynamical signatures for criticality in the brain. The combination of signatures for criticality, power law distributions of avalanche sizes and durations, as well as a specific scaling relationship between anomalous exponents, defines a universality class characteristic of the particular critical phenomenon observed in the neural experiments. The spin model is a candidate for a minimal model of a self-organized critical adaptive network for the universality class of neural criticality. As a prototype model, it provides the background for models that include more biological details, yet share the same universality class characteristic of the homeostasis of activity in the brain.Comment: 17 pages, 5 figure
    corecore