115 research outputs found

    Identification and characterization of Eya1-interacting proteins

    Get PDF
    Mutations in the human EYA1 gene are associated with several congenital disorders, as for example BOR (branchio-oto-renal) syndrome. BOR patients suffer from severe malformations of the ear, the branchial arches and the kidneys. The mechanisms by which EYA1 mutations cause human disease are only poorly understood. Several disease-associated EYA1 mutations were characterized in this work regarding their effect on Eya1 protein function. Some of the mutations lead to enhanced proteasomal degradation of the protein in mammalian cells. Loss of Eya1 activity due to loss of Eya1 protein might represent a so far unknown mechanism for the onset of EYA1-associated diseases. Further analyses revealed that ubiquitination occurs in the C-terminus of Eya1 and is inhibited by interaction with Six1. These findings indicate that Six1 is involved in the regulation of Eya1 protein stability. A central aim of this work was the identification of novel Eya1-interacting proteins. Using yeast two-hybrid analysis two novel interaction partners were identified: Sipl1 and Rbck1. Binding studies demonstrated that the interaction is mediated via the C-terminus of Eya1 and the Ubl domain of Sipl1 or Rbck1, respectively. Furthermore, orthologs of Sipl1 and Rbck1 were identified in zebrafish. Sipl1 and Rbck1 are co-expressed with Eya1 in several organs during embryogenesis of both mouse and zebrafish. Interestingly, knockdown of one Sipl1 ortholog in zebrafish led to a BOR syndrome-like phenotype. The results of expression studies and knockdown analyses indicate that, indeed, the Eya1-Sipl1/Rbck1 interaction is of physiological relevance in the context of organ development. This hypothesis was underlined by the identification of SIPL1 and RBCK1 mutations in patients suffering from BOR syndrome. A first mechanistic basis was provided by results from transactivation studies showing that Sipl1 and Rbck1 enhance the function of Eya proteins to act as co-activators for the Six transcription factors

    FTO obesity risk variants are linked to adipocyte IRX3 expression and BMI of children: relevance of FTO variants to defend body weight in lean children?

    Get PDF
    Background: Genome-wide association studies have identified variants within the FTO (fat mass and obesity associated) locus as the strongest predictors of obesity amongst all obesity-associated gene loci. Recent evidence suggests that variants in FTO directly affect human adipocyte function through targeting IRX3 and IRX5 and thermogenesis regulation. Aim: We addressed the relevance of this proposed FTO-IRX pathway in adipose tissue (AT) of children. Results: Expression of IRX3 was higher in adipocytes compared to SVF. We found increased adipocyte-specific expression of IRX3 and IRX5 with the presence of the FTO risk haplotype in lean children, whereas it was unaffected by risk variants in obese peers. We further show that IRX3 expression was elevated in isolated adipocytes and AT of lean compared to obese children, particularly in UCP1-negative adipocytes, and inversely correlated with BMI SDS. Independent of BMI, IRX3 expression in adipocytes was significantly related to adipocyte hypertrophy, and subsequent associations with AT inflammation and HOMA-IR in the children. Conclusion: One interpretation of our observation of FTO risk variants linked to IRX3 expression and adipocyte size restricted to lean children, along with the decreased IRX3 expression in obese compared to lean peers, may reflect a defense mechanism for protecting body-weight, which is pertinent for lean children

    Non-pathological Chondrogenic Features of Valve Interstitial Cells in Normal Adult Zebrafish

    Get PDF
    n the heart, unidirectional blood flow depends on proper heart valve function. As, in mammals, regulatory mechanisms of early heart valve and bone development are shown to contribute to adult heart valve pathologies, we used the animal model zebrafish (ZF, Danio rerio) to investigate the microarchitecture and differentiation of cardiac valve interstitial cells in the transition from juvenile (35 days) to end of adult breeding (2.5 years) stages. Of note, light microscopy and immunohistochemistry revealed major differences in ZF heart valve microarchitecture when compared with adult mice. We demonstrate evidence for rather chondrogenic features of valvular interstitial cells by histological staining and immunodetection of SOX-9, aggrecan, and type 2a1 collagen. Collagen depositions are enriched in a thin layer at the atrial aspect of atrioventricular valves and the ventricular aspect of bulboventricular valves, respectively. At the ultrastructural level, the collagen fibrils are lacking obvious periodicity and orientation throughout the entire valve. (J Histochem Cytochem 67:361–373, 2019

    Simvastatin induces apoptosis in PTEN‑haploinsufficient lipoma cells

    Get PDF
    Adipose tissue tumors (lipomas) frequently develop in patients with heterozygous germ line phosphatase and tensin homolog (PTEN) mutations. simvastatin has been demonstrated to exhibit antitumor effects, and so the aim of the present study was to assess the effects of simvastatin on the growth of human PTEN haploinsufficient lipoma cells. Whether the effects of simvastatin in lipomas are mediated via PTEN upregulation was also assessed. The results of the present study revealed that simvastatin treatment reduced cell viability and induced apoptosis in human lipoma cells. Furthermore, it was demonstrated that the expression of cellular PTEN mRNA and protein was increased following simvastatin stimulation. In addition, the phosphorylation of protein kinase B and downstream targets of mammalian target of rapamycin and 4E‑binding protein (4E‑BP)‑1 was attenuated. It was also demonstrated that simvastatin induced PTEN transcriptional upregulation by increasing peroxisome proliferator‑activated receptor (PPAR)γ expression. The small interfering RNA‑mediated knockdown of PPARγ abrogated the stimulatory effect of simvastatin on the PTEN protein, but did not influence apoptosis. The results of the present study suggest that simvastatin may be beneficial for patients with inoperable PTEN haploinsufficient lipomas

    Transcriptome Analyses of Adipose Tissue Samples Identify EGFL6 as a Candidate Gene Involved in Obesity-Related Adipose Tissue Dysfunction in Children

    Get PDF
    Obesity develops early in childhood and is accompanied by early signs of adipose tissue (AT) dysfunction and metabolic disease in children. In order to analyse the molecular processes during obesity-related AT accumulation in children, we investigated genome-wide expression profiles in AT samples, isolated adipocytes, and stromal vascular fraction (SVF) cells and assessed their relation to obesity as well as biological and functional AT parameters. We detected alterations in gene expression associated with obesity and related parameters, i.e., BMI SDS, adipocyte size, macrophage infiltration, adiponectin, and/or leptin. While differential gene expression in AT and adipocytes shared an enrichment in metabolic pathways and pathways related to extracellular structural organisation, SVF cells showed an overrepresentation in inflammatory pathways. In adipocytes, we found the strongest positive association for epidermal growth factor-like protein 6 (EGFL6) with adipocyte hypertrophy. EGFL6 was also upregulated during in vitro adipocyte differentiation. In children, EGFL6 expression was positively correlated to parameters of AT dysfunction and metabolic disease such as macrophage infiltration into AT, hs-CRP, leptin levels, and HOMA-IR. In conclusion, we provide evidence for early alterations in AT gene expression related to AT dysfunction in children and identified EGFL6 as potentially being involved in processes underlying the pathogenesis of metabolic disease

    Myoglobin‐mediated lipid shuttling increases adrenergic activation of brown and white adipocyte metabolism and is as a marker of thermogenic adipocytes in humans

    Full text link
    Background: Recruitment and activation of brown adipose tissue (BAT) results in increased energy expenditure (EE) via thermogenesis and represents an intriguing therapeutic approach to combat obesity and treat associated diseases. Thermogenesis requires an increased and efficient supply of energy substrates and oxygen to the BAT. The hemoprotein myoglobin (MB) is primarily expressed in heart and skeletal muscle fibres, where it facilitates oxygen storage and flux to the mitochondria during exercise. In the last years, further contributions of MB have been assigned to the scavenging of reactive oxygen species (ROS), the regulation of cellular nitric oxide (NO) levels and also lipid binding. There is a substantial expression of MB in BAT, which is induced during brown adipocyte differentiation and BAT activation. This suggests MB as a previously unrecognized player in BAT contributing to thermogenesis. Methods and results: This study analyzed the consequences of MB expression in BAT on mitochondrial function and thermogenesis in vitro and in vivo. Using MB overexpressing, knockdown or knockout adipocytes, we show that expression levels of MB control brown adipocyte mitochondrial respiratory capacity and acute response to adrenergic stimulation, signalling and lipolysis. Overexpression in white adipocytes also increases their metabolic activity. Mutation of lipid interacting residues in MB abolished these beneficial effects of MB. In vivo, whole-body MB knockout resulted in impaired thermoregulation and cold- as well as drug-induced BAT activation in mice. In humans, MB is differentially expressed in subcutaneous (SC) and visceral (VIS) adipose tissue (AT) depots, differentially regulated by the state of obesity and higher expressed in AT samples that exhibit higher thermogenic potential. Conclusions: These data demonstrate for the first time a functional relevance of MBs lipid binding properties and establish MB as an important regulatory element of thermogenic capacity in brown and likely beige adipocytes. Keywords: energy expenditure; hemoprotein; metabolism; obesity; oxphos; uncoupling protein

    Trim28 Haploinsufficiency Triggers Bi-stable Epigenetic Obesity.

    Get PDF
    This is the final version of the article. It first appeared from Cell Press via http://dx.doi.org/10.1016/j.cell.2015.12.025More than one-half billion people are obese, and despite progress in genetic research, much of the heritability of obesity remains enigmatic. Here, we identify a Trim28-dependent network capable of triggering obesity in a non-Mendelian, "on/off" manner. Trim28(+/D9) mutant mice exhibit a bi-modal body-weight distribution, with isogenic animals randomly emerging as either normal or obese and few intermediates. We find that the obese-"on" state is characterized by reduced expression of an imprinted gene network including Nnat, Peg3, Cdkn1c, and Plagl1 and that independent targeting of these alleles recapitulates the stochastic bi-stable disease phenotype. Adipose tissue transcriptome analyses in children indicate that humans too cluster into distinct sub-populations, stratifying according to Trim28 expression, transcriptome organization, and obesity-associated imprinted gene dysregulation. These data provide evidence of discrete polyphenism in mouse and man and thus carry important implications for complex trait genetics, evolution, and medicine.This work was supported by funding from the Max-Planck Society, ERC (ERC-StG-281641), DFG (SFB992 “MedEp”; SFB 1052 “ObesityMechanisms”), EU_FP7 (NoE ”Epigenesys”; “Beta-JUDO” n° 279153), BMBF (DEEP), MRC (Metabolic Disease Unit - APC, SOR, GSHY, MRC_MC_UU_12012/1), Wellcome Trust (SOR, 095515/Z/11/Z) and the German Research Council (DFG) for the Clinical Research Center "Obesity Mechanisms" CRC1052/1 C05 and the Federal Ministry of Education and Research, Germany, FKZ, 01EO1001 (Integrated Research and Treatment Center (IFB) Adiposity Diseases

    Impact of Metabolic Regulators on the Expression of the Obesity Associated Genes FTO and NAMPT in Human Preadipocytes and Adipocytes

    Get PDF
    FTO and NAMPT/PBEF/visfatin are thought to play a role in obesity but their transcriptional regulation in adipocytes is not fully understood. In this study, we evaluated the transcriptional regulation of FTO and NAMPT in preadipocytes and adipocytes by metabolic regulators.We assessed FTO mRNA expression during human adipocyte differentiation of Simpson-Golabi-Behmel syndrome (SGBS) cells and primary subcutaneous preadipocytes in vitro and evaluated the effect of the metabolic regulators glucose, insulin, dexamethasone, IGF-1 and isoproterenol on FTO and NAMPT mRNA expression in SGBS preadipocytes and adipocytes. FTO mRNA levels were not significantly modulated during adipocyte differentiation. Also, metabolic regulators had no impact on FTO expression in preadipocytes or adipocytes. In SGBS preadipocytes NAMPT expression was more than 3fold induced by dexamethasone and isoproterenol and 1.6fold by dexamethasone in adipocytes. Complete glucose restriction caused an increase in NAMPT mRNA expression by more than 5fold and 1.4fold in SGBS preadipocytes and adipocytes, respectively.FTO mRNA expression is not significantly affected by differentiation or metabolic regulators in human adipocytes. The stimulation of NAMPT expression by dexamethasone, isoproterenol and complete glucose restriction may indicate a regulation of NAMPT by metabolic stress, which was more pronounced in preadipocytes compared to mature adipocytes

    Atomoxetine treatment and ADHD-related difficulties as assessed by adolescent patients, their parents and physicians

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The degree of ADHD-related difficulties – reflecting overall impairment, social functioning, and quality of life – may be perceived differently by adolescent patients, parents and physicians. The primary aim of this study was to investigate ADHD-related difficulties during atomoxetine treatment, as perceived by the three different raters. Secondary objectives focused on effectiveness and tolerability of atomoxetine treatment in a population of adolescent patients with ADHD.</p> <p>Methods</p> <p>Adolescents with ADHD, aged 12–17 years, received open-label atomoxetine (0.5–1.2 mg/kg/day) up to 24 weeks. ADHD-related difficulties at various times of the day were rated using the Global Impression of Perceived Difficulties (GIPD) instrument. Inter-rater agreement was analyzed using Cohen's Kappa with 95% confidence intervals (95% CI). ADHD-Rating Scale (ADHD-RS) and Clinical Global Impression Severity (GGI-S) scores were assessed by the investigator; and spontaneous adverse events, vital signs and laboratory parameters were collected for tolerability assessments.</p> <p>Results</p> <p>159 patients received atomoxetine. Patients' baseline mean GIPD total ratings were significantly lower than parents' and physicians' scores (12.5 [95%CI 11.6;13.5] vs. 17.2 [16.2;18.2] and 18.8 [17.8;19.8]). For all raters, GIPD scores significantly improved over time. Changes were greatest within the first two weeks. Kappa coefficients varied between 0.186 [0.112;0.259] and 0.662 [0.529;0.795], with strongest agreements between parent and physician assessments, and significant improvements of patient/physician agreements over time (based on 95% CIs). ADHD-RS and CGI-S scores significantly improved over the course of the study (based on 95% CIs). Tolerability results were consistent with earlier reports.</p> <p>Conclusion</p> <p>ADHD-related difficulties were perceived differently by the raters in this open-label trial, but consistently improved during atomoxetine treatment. The GIPD instrument appeared sensitive to treatment-related change. These primarily quantitative findings may guide future studies to more systematically investigate the clinical and practical relevance of the differences observed. Additionally, in order to further validate these results, placebo- and comparator-controlled trials are recommended as well as inclusion of healthy controls and other patient populations.</p> <p>Trial Registration</p> <p><b>Clinical Trial Registry</b>: ClinicalTrials.gov: NCT00191737</p
    • 

    corecore